

An efficient method for market risk management under multivariate extreme value theory approach

Miloš Božović Center for Investments and Finance Belgrade, Serbia

Introduction

- Market risk assessment typically relies on quantile-based measures of risk:
 - o Incoherent measures (e.g. Value at Risk)
 - Coherent measures (e.g. Expected Shortfall)
- Traditional methods of VaR and ES estimation:
 - o Analytical method
 - o Historical simulation
 - o Monte Carlo simulation
- Problem with traditional methods:
 - They try to reconstruct the entire distribution of returns.
 - However, extreme losses matter the most.

Extreme Value Theory (EVT)

- Characterizes the tail behavior of the distribution of returns.
- By focusing on extreme losses, the EVT successfully avoids tying the analysis down to a single parametric family fitted to the whole distribution.
- The empirical results show that VaR and ES estimates obtained by using EVT-based models outperform the ones based on analytical and historical methods.
 - McNeil (1997), Nyström & Skoglund (2002), Harmantzis, Chien & Miao (2005), and Marinelli, d'Addona & Rachev (2007)

Univariate EVT: Theorem 1

Fisher & Tippett (1928), Gnedenko (1943)

Let $\{X_i\}_{i=1}^n$ be a set of *n* independent and identically distributed random variables with distribution function *F* and suppose that there are sequences of normalization constants, $\{a_n\}$ and $\{b_n\}$, such that, for some non-degenerated limit distribution F^* , we have

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{M_n - b_n}{a_n} \le x\right) = \lim_{n \to \infty} [F(a_n x + b_n)]^n = F^*(x), \quad x \in \mathbb{R}.$$

Then, there exist $\xi \in \mathbb{R}$, $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_+$ such that $F^*(x) = \Gamma_{\xi,\mu,\sigma}(x)$ for any $x \in \mathbb{R}$, where

$$\Gamma_{\xi,\mu,\sigma}(x) := \exp\left[-\left(1+\xi\frac{x-\mu}{\sigma}\right)_{+}^{-1/\xi}\right]$$

is the so-called generalized extreme value (GEV) distribution.

Univariate EVT: Theorem 2

Picklands (1975)

Let $\{X_i\}_{i=1}^n$ be a set of *n* independent and identically distributed random variables with distribution function *F*. Define

$$F_u(y) := \mathbb{P}(X \le u + y \mid X > u) = \frac{F(u + y) - F(u)}{1 - F(u)}, \quad y > 0$$

to be the distribution of excesses of X over the treshold u. Let x_F be the end of the upper tail of F, possibly a positive infinity. Then, if F is such that the limit given by Theorem 1 exists, there are constants $\xi \in \mathbb{R}$ and $\beta \in \mathbb{R}_+$ such that

$$\lim_{u \to x_F} \sup_{u < x < x_F} |F_u(x) - G_{\xi,\beta}(x-u)| = 0,$$

where

$$G_{\xi,\beta}(y) := 1 - \left(1 + \xi \frac{y}{\beta}\right)_+^{-1/\xi} \tag{1}$$

is known as the generalized Pareto (GP) distribution.

Multivariate EVT

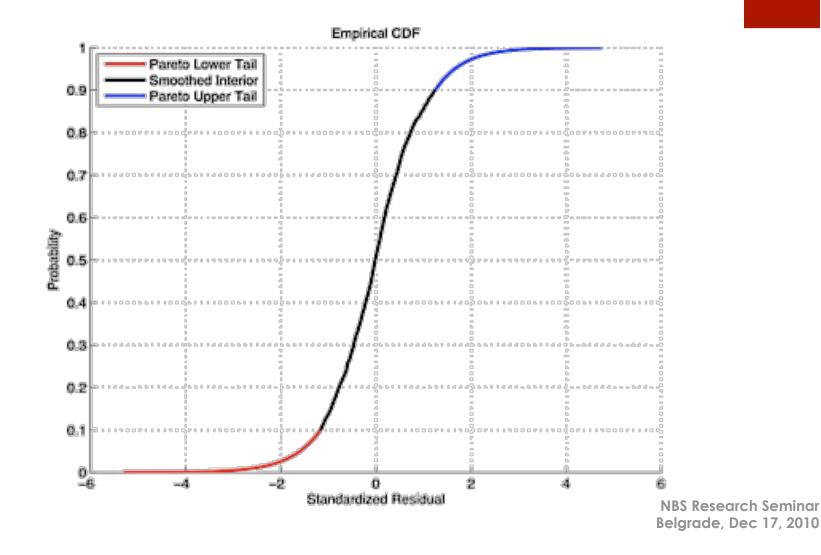
- The results of the univariate EVT hold for i.i.d. random numbers.
- Multidimensional limiting relations are also available (e.g. Smith 2000), but model complexity increases greatly with the number of risk factors.
- Joint distributions of extreme returns often modeled by copulas.
- The proposed multivariate EVT method is based on separate estimations of the univariate model.
 - Works with *n* orthogonal series of conditional residuals that are approximately i.i.d.

5

Estimation methodology

- Choose a reasonable treshold u.
- Use one of the conventional methods to fit the interior of the distribution (e.g. historical simulation).
- Fit the upper and lower tail separately with GP distribution:
 - o Using the Hill estimator (Danielsson & de Vries, 1997), or
 - o Maximum likelihood estimator
- Nyström and Skoglund (2002) show that the ML outperforms the Hill estimator, and is almost insensitive to the choice of treshold u.

Estimation methodology



7

Estimation methodology

- Total distribution beyond the treshold is given by $F(x) = (1 F(u)) G_{\xi,\beta}(x u) + F(u)$
- From the estimated parameters of the GP distribution we find

$$\widehat{\operatorname{VaR}}_{q_{\pm}} = u_{\pm} \pm \frac{\widehat{\beta}_{\pm}}{\widehat{\xi}_{\pm}} \left[\left(\frac{T}{N_{u_{\pm}}} (1 - q_{\pm}) \right)^{-\widehat{\xi}_{\pm}} - 1 \right]$$
$$\widehat{\operatorname{ES}}_{q_{\pm}} = \frac{1}{1 - \widehat{\xi}_{\pm}} \left(\widehat{\operatorname{VaR}}_{q_{\pm}} \pm \widehat{\beta}_{\pm} - \widehat{\xi}_{\pm} u_{\pm} \right)$$

where + (–) stands for the upper (lower) tail.

Orthogonalization

In n dimensions, use the principal components of the unconditional VCV matrix

$$\begin{split} \mathbf{\Lambda} &:= \operatorname{diag}(\lambda_1, \ \lambda_2, \ \dots, \ \lambda_n) \\ \mathbf{V}_{\infty} &= \mathbf{P} \mathbf{\Lambda} \mathbf{P}' \\ \mathbf{L} &:= \mathbf{P} \mathbf{\Lambda}^{1/2} \\ \mathbf{z}_t &= \mathbf{L}^{-1} \boldsymbol{\varepsilon}_t \\ \mathbb{E} \left(\mathbf{z}_t \right) &= \mathbf{0} \\ \operatorname{var} \left(\mathbf{z}_t \right) &= \mathbf{1}_n \end{split}$$

- This gives a set of (at most) n orthogonal standardized coordinates.
- Univariate EVT can be applied separately on each.

Filtering

Log-returns: ARMA(r,m)

$$y_{t,i} = \mu_i + \sum_{s=1}^r b_{s,i} y_{t-s,i} + \varepsilon_{t,i} + \sum_{s=1}^m \theta_{s,i} \varepsilon_{t-s,i}$$
$$\mathbb{E} \left(\varepsilon_t | \mathcal{F}_{t-1} \right) = \mathbb{E} \left(\varepsilon_t \right) = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}' =: \mathbf{0},$$
$$\operatorname{var} \left(\varepsilon_t | \mathcal{F}_{t-1} \right) = \mathbb{E} \left(\varepsilon_t \varepsilon_t' | \mathcal{F}_{t-1} \right) =: \mathbf{V}_t$$

Conditional variance: GJR-GARCH(p,q)

$$\begin{aligned} \mathbf{V}_t &= \mathbf{\Omega} + \sum_{s=1}^p \mathbf{A}_s \mathbf{E}_{t-s} + \sum_{s=1}^p \mathbf{\Theta}_s \mathbf{I}_{t-s} \mathbf{E}_{t-s} + \sum_{s=1}^q \mathbf{B}_s \mathbf{V}_{t-s} \\ \mathbf{E}_t &:= \mathbf{\varepsilon}_t \mathbf{\varepsilon}'_t \\ \mathbf{I}_t &:= \operatorname{diag}(\operatorname{sgn}(-\varepsilon_{t,1})_+, \operatorname{sgn}(-\varepsilon_{t,2})_+, \ldots, \operatorname{sgn}(-\varepsilon_{t,n})_+) \end{aligned}$$

Filtering

In the basis of principal components:

$$\begin{aligned} \widehat{\mathbf{V}}_t &= \widehat{\mathbf{\Omega}} + \sum_{s=1}^p \widehat{\mathbf{A}}_s \widehat{\mathbf{E}}_{t-s} + \sum_{s=1}^p \widehat{\mathbf{\Theta}}_s \widehat{\mathbf{I}}_{t-s} \widehat{\mathbf{E}}_{t-s} + \sum_{s=1}^q \widehat{\mathbf{B}}_s \widehat{\mathbf{V}}_{t-s} \\ \widehat{\mathbf{E}}_t &:= \mathbf{L}^{-1} \mathbf{E}_t \mathbf{L}^{-1\prime} = \mathbf{z}_t \mathbf{z}_t' \\ \widehat{\mathbf{I}}_t &:= \mathbf{L}^{-1} \mathbf{I}_t \mathbf{L}^{-1\prime} = \operatorname{diag}(\operatorname{sgn}(-z_{t,1})_+, \operatorname{sgn}(-z_{t,2})_+, \ldots, \operatorname{sgn}(-z_{t,n})_+) \end{aligned}$$

Estimate n separate univariate GJR-GARCH(p,q) models:

$$\widehat{V}_{t,i} = \widehat{\Omega}_i + \sum_{s=1}^p \widehat{A}_{s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^p \widehat{\Theta}_{s,i} \widehat{I}_{t-s,i} \widehat{E}_{t-s,i} + \sum_{s=1}^q \widehat{B}_{s,i} \widehat{V}_{t-s,i}$$

GMM estimation

Use GMM to avoid:

o having a unique likelihood function

o specific distributional assumptions

• The estimator (Skoglund, 2001):

$$\begin{aligned} \mathbf{e}_t &:= \left[z_t \ z_t^2 - \widehat{V}_t \right]' \\ \mathbf{g}_t(\psi) &:= \mathbf{F}'_t(\psi) \mathbf{e}_t \\ \mathbb{E} \left[\mathbf{g}_t(\psi) \right] &= \mathbf{0} \\ \mathbf{m}(\psi) &:= \frac{1}{T} \sum_{t=1}^T \mathbf{g}_t(\psi) \\ \widehat{\psi} &= \arg\min_{\psi} \mathbf{m}(\psi)' \mathbf{W} \mathbf{m}(\psi) \end{aligned}$$

Forecasting

Confidence interval for the forecast of the value of *i*-th principal component, *h* steps ahead:

$$z_{t+h,i}^{\pm} = F_i^{-1}(q_{\pm}) \sqrt{\hat{V}_{t+h,i}}$$

Forecasts of multivariate VaR and ES:

$$\operatorname{VaR}_{q_{\pm}} = \mathbf{a}' \mathbf{L} \left[\mathbb{E} \left(\widehat{\mathbf{y}}_{t+h} | \mathcal{F}_t \right) + \mathbf{z}_{t+h}^{\pm} \right]$$

$$\operatorname{ES}_{q_{\pm}} = \mathbf{a}' \mathbf{L} \widetilde{\mathbf{z}}_{t+h}^{\pm}$$

$$\widetilde{z}_{t+h,i}^{\pm} = \widetilde{F}_i^{-1}(q_{\pm}) \sqrt{\widehat{V}_{t+h,i}}$$

$$\widetilde{F}_i^{-1}(q_{\pm}) = \frac{1}{1 - \xi_{\pm}} \left[F_i^{-1}(q_{\pm}) \pm \beta_{\pm} - \xi_{\pm} u_{\pm} \right]$$

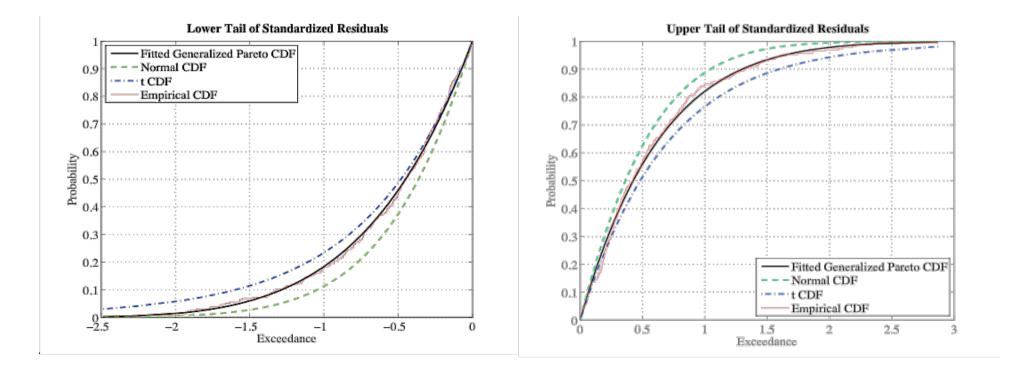
Data

- Daily averages of four interbank exchange rates
 - Base currency: USD
 - o Term currencies: EUR, GBP, JPY, CHF
- Sample 1: January 4, 1999 December 31, 2007
- Sample 2: January 4, 1999 September 30, 2008
- Source: Thomson's Datastream

Parameters of the GP distribution

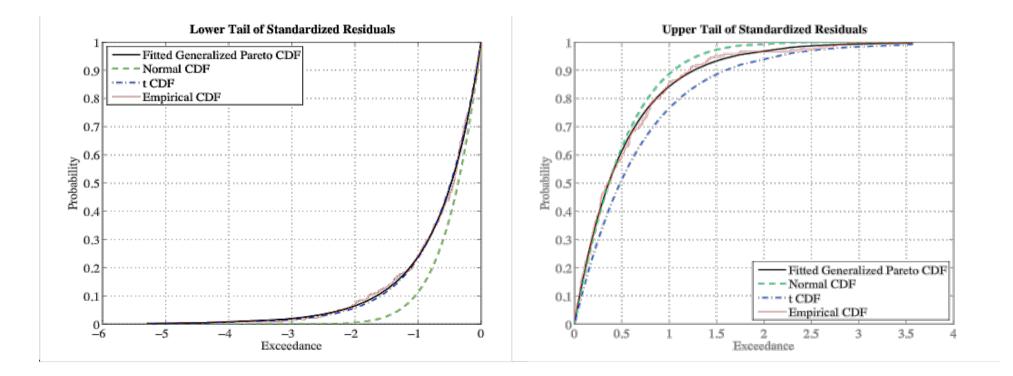
	Ţ	Upper tail				
Parameter	PC 1	PC 2	PC 3	PC 4		
<u>^</u>						
$\widehat{\xi}_+$	-0.1096	0.0544	0.0058	0.1804		
	(0.0612)	(0.0703)	(0.0755)	(0.0752)		
\widehat{eta}_+	0.6397	0.5153	0.5724	0.5386		
	(0.0573)	(0.0497)	(0.0575)	(0.0536)		
	Lower tail					
Parameter	PC 1	PC 2	PC 3	PC 4		
$\widehat{\xi}_{-}$	-0.2030	0.0570	-0.0293	0.0239		
	(0.0575)	(0.0714)	(0.0572)	(0.0625)		
\widehat{eta}	0.7013	0.6765	0.6379	0.6031		
	(0.0605)	(0.0658)	(0.0556)	(0.0548)		

First principal component

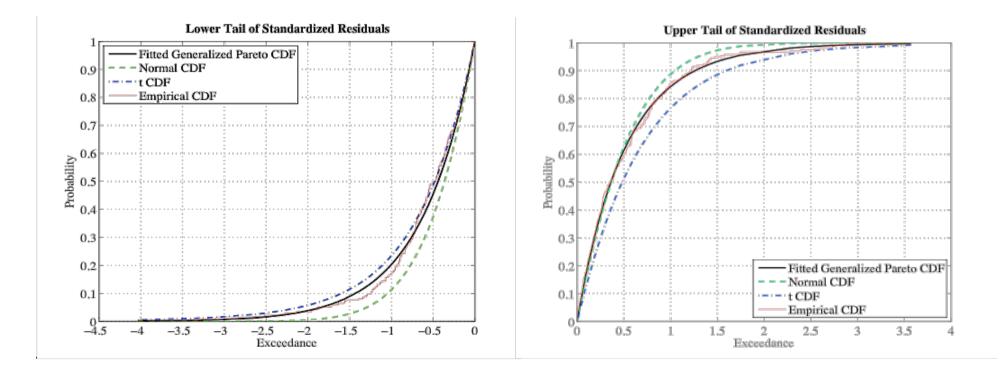


16

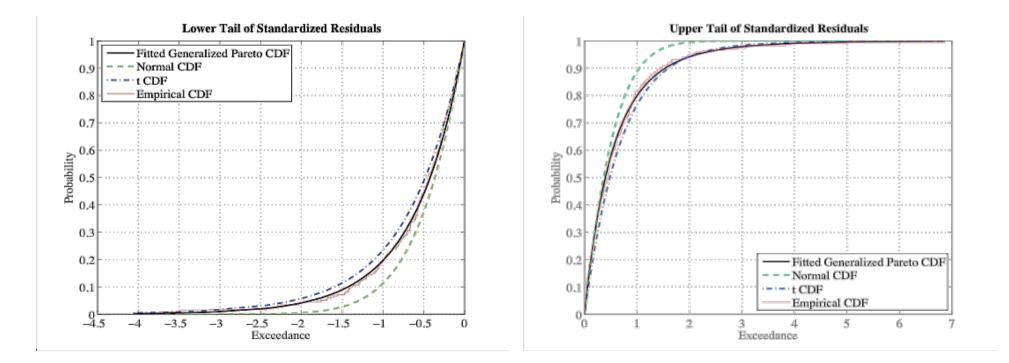
Second principal component



Third principal component



Fourth principal component



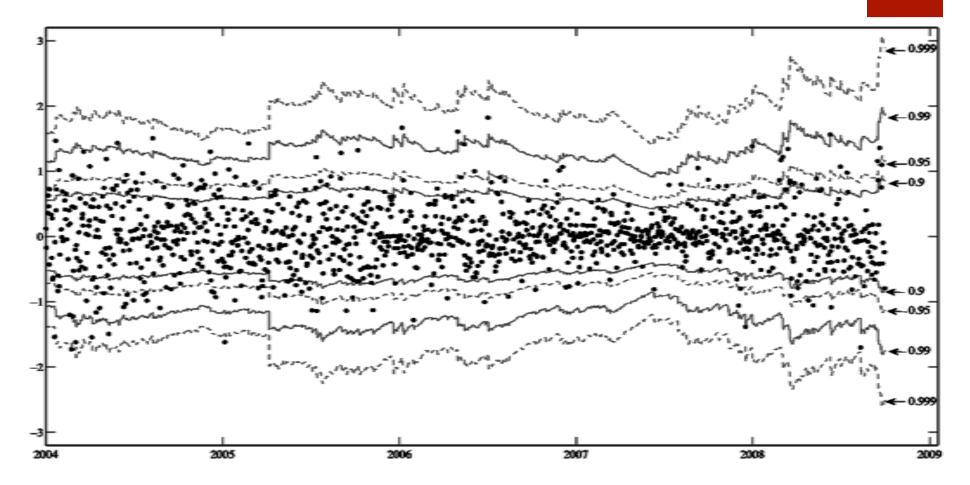
VaR and ES

 One-step-ahead forecasts for an equally-weighted portfolio (January 1, 2008)

Upper tail					
CL	0.90	0.95	0.99	0.999	
VaR	0.5294	0.6947	1.0750	1.6101	
\mathbf{ES}	0.7284	0.8924	1.2694	1.7994	

		Lower ta	lil	
CL	0.90	0.95	0.99	0.999
VaR	-0.4212	-0.5923	-0.9203	-1.2495
\mathbf{ES}	-0.6790	-0.8251	-1.1026	-1.3743

Backtesting



Backtesting: Number of violations by quantiles

		TT / ·1			
		Upper tail			
Method		Number of violations			
	CL = 0.90	CL = 0.95	CL = 0.99	CL = 0.999	
EVT	109	56	12	0	
Normal	144	89	31	16	
\mathbf{t}	121	49	11	0	
HS	235	166	70	21	
Expected	123.9	61.95	12.39	1.239	

		Lower tail		
Method		Number o	of violations	
	CL = 0.90	CL = 0.95	CL = 0.99	$\mathrm{CL}=0.999$
		10	0	-
EVT	88	48	9	1
Normal	118	67	19	8
t	86	40	7	0
HS	219	142	54	28
Expected	123.9	61.95	12.39	1.239

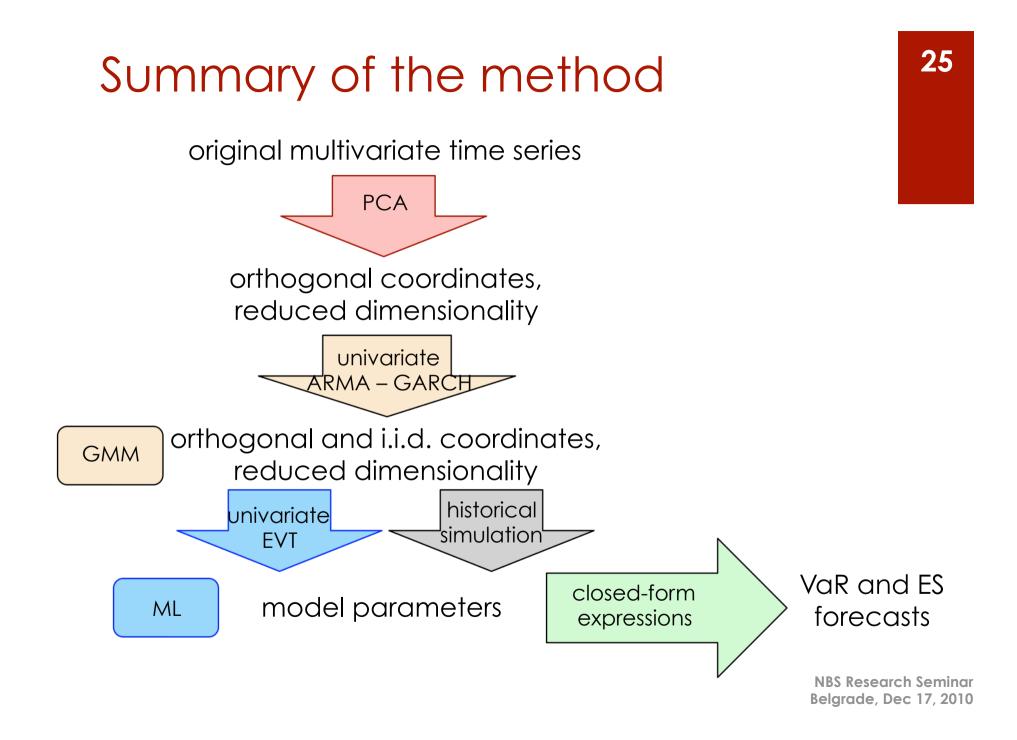
Backtesting: Kupiec test

		Upper tail		
Method	Number of violations			
	CL = 0.90	$\mathrm{CL} = 0.95$	CL = 0.99	$\mathrm{CL}=0.999$
EVT	2.0665	0.6207	0.0125	2.4792
	$(< 10^{-4})$	$(< 10^{-4})$	$(< 10^{-4})$	
Normal	3.4620	11.0174	19.9238	52.5198
	$(< 10^{-4})$	(0.4564)	(0.0626)	(~ 1.0)
t	0.0759	3.0602	0.1637	2.4792
	$(< 10^{-4})$	$(< 10^{-4})$	(0.2022)	
HS	90.1083	128.6208	129.9539	79.6643
	$(< 10^{-4})$	(0.0142)	(~ 1.0)	(~ 1.0)

		Lower tail		
Method		Number o	of violations	
	CL = 0.90	CL = 0.95	CL = 0.99	CL = 0.999
EVT	$12.7273 \ (< 10^{-4})$	$3.5725 \ (< 10^{-4})$	1.0354 (0.0006)	0.0494 (0.1760)
Normal	$\begin{array}{c} 0.3167 \\ (< 10^{-4}) \end{array}$	$0.4226 \ (< 10^{-4})$	$3.0626 \ (< 10^{-4})$	$16.3572 \\ (0.9625)$
t	$ \begin{array}{l} 14.2719 \\ (< 10^{-4}) \end{array} $	$9.3110 \ (< 10^{-4})$	$2.8099 \\ (0.0980)$	2.4792
HS	$\begin{array}{c} 67.6349 \\ (< 10^{-4}) \end{array}$		$77.1940 \\ (0.9791)$	$\begin{array}{c} 121.6632 \\ (\sim 1.0) \end{array}$

Backtesting: Pearson's test

Method	Lower tail	Upper tail
EVT	0.4170	1.3142
	(0.0189)	(0.1410)
Normal	38.5252	7.5773
	(~ 1.0)	(0.8917)
t	2.2298	2.0934
HS	(0.3064) 123.1067	(0.2814) 146.7974
110	(~ 1.0)	(~ 1.0)



Conclusion

- The proposed approach employs the notion that some key results of the univariate EVT can be applied separately to a set of orthogonal i.i.d. random variables.
- Such random variables can be constructed from the principal components of ARMA-GARCH conditional residuals of a multivariate return series.
- The estimation is free of any unnecessary distributional assumptions.
- The proposed approach tends to yield more precise VaR and ES forecasts than the usual methods based on conditional normality, conditional t-distribution or historical simulation, without losing efficiency.