

Intercorporate Guarantees, Leverage and Taxes

Elisa Luciano Giovanna Nicodano Università di Torino, Collegio Carlo Alberto and ECGI

National Bank of Serbia November 2011

Motivation

- Holding companies routinely support Subsidiaries through *guarantees*
 - Bodie & Merton,92; Khanna et al,00; Deloof et al, 06
- Which is the effect of guarantees on the joint value of H+S?
 - Gains to S offset by costs for H, or value increase?
 - Because of diversification?
- Do guarantees affect optimal debt?
- Should firms both receive and provide support?
- If not, which type of firm should provide support?

FACOLEÀ ECONOMIA TORINO

Set Up

- We add the choice of guarantees to Leland 2007
 - Endogenous debt with costly bankruptcy and taxation
 - Diversification potential but no non-financial synergies
 - symmetric information
- We focus on *conditional* guarantees: H rescues S only if both survive, because of corporate limited liability
 - Emery et al., 05; Dewaelheyns et al. 06; Gopalan et al. 07; Hadden 86
- Two benchmarks:
 - stand alone case SA => no guarantee
 - merger case M => unconditional guarantee

Main Results

Conditional guarantees, relative to the stand alone case:

- increase the joint value of H+S
 - Value \cong tax savings default costs
 - Guarantee is an option to save on default costs that enhances tax savings
 - Works even with equal cash flows that are perfectly correlated, thanks to different debt levels
- increase the joint level of debt, under a sufficient condition
 - S debt rises, because of reduced bankruptcy costs
 - H debt falls, in order to enhance the provision of support

Literature

- Compares Mergers to Stand Alone Companies:
 - Lewellen (1971): a Merger reduces default costs thanks to coinsurance, increasing debt, tax gains and value
 - We show that conditional guarantees don't need imperfect correlation to generate value
 - Leland (2007): if cash flows can be negative, M reduces value when loss of limited liability exceeds tax gains generated by coinsurance
 - Conditional guarantees allow to preserve limited liability
- Emphasizes corporate limited liability in Groups
 - Cestone et al (2005) and Bianco et al (2006) study how limited liability affects effort and risk shifting
 - No taxes and no endogenous debt, that are crucial here
- Prices guarantees like a put option, taking debt as exogenous (Merton (1977)
 - We endogenize debt

Model

- Entrepreneur owns two activities
 - -i=1,2 if no guarantee; i=H,S if conditional guarantee
- With future cash flows X_{i} distributed with F_{i}
- Chooses the face value of zero-coupon debt, $P_i \ge 0$,
- So as to max the no-arbitrage value of the firm
 - given tax rate $\tau_i > 0$
 - default when after-tax cash flow at T is lower than P; proportional bankruptcy costs $\alpha_i X_i$, with $0 < \alpha_i < 1$

$$\sum_{i} v_{0i} = \sum_{i} D_{0i} + E_{0i} = \sum_{i} V_{0i} + TS_{i} - DC_{i}$$

Tax Bankruptcy Trade Off

•
$$TS_i = \text{tax savings} = \tau_i \varphi [EX_i^+ - E(X_i - X_i^Z)^+]$$

- where $X_i^Z = \text{tax shield} = P_i - D_{0i}$

•
$$DC_i = \alpha_i \varphi [EX_i \mathbb{1}_{\{0 < X_i < X_i^d\}}]$$

- where
$$X_i^d$$
 = default threshold = $P_i + \frac{\tau_i}{1 - \tau_i} D_{0i}$

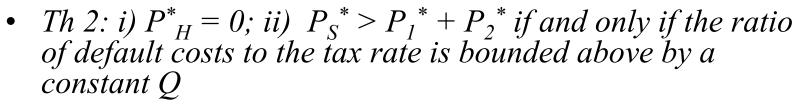
•
$$DC_s = \alpha_s \varphi [EX_s 1_{\{0 < X_s < X_s^d; X_H < h(X_s)\}}]$$

- where $X_h > h(X_s)$ if excess cash flow is H exceeds S cash needs

What is affected by Guarantees

- The market value of debt, D, depends on guarantees for any given principal.
 - Hence both the tax shield and default threshold differ across guarantees, affecting both Tax Savings and Default Costs.
- Default costs also vary because they are directly affected by the provision of support.

Results on



Unilateral conditional guarantees

- *Th 1: conditional guarantees are value increasing*
 - Expected savings in default costs are positive because $P*_s>0$.

$$\Gamma(P_H, P_S) \triangleq DC_2(P_S) - DC_S(P_H, P_S) = \alpha \phi \mathbb{E} \left[X_s \mathbf{1}_{\{0 < X_s < X_s^d, X_H > h(X_S)\}} \right]$$

Results on Unilateral conditional guarantees

- i) expected savings in total default costs fall in P_H because H is more likely to default and is less likely to support S
- ii) tax savings increase in Subsidiary's debt.
 - But increasing P_S may reduce H ability to support S, thus increasing default costs.
 - The Q condition ensures that marginal tax gains exceed marginal default costs at $P_S = P_1^* + P_2^*$.
 - Concave objective required.

Unilateral or Mutual Guarantees?

- Th 3: There exists a proportional default cost α* below which unilateral guarantees are the only optimal guarantees.
- Why not two options to save on default costs?
 - With mutual guarantees each firm should both increase its debt - since it receives support and decrease it - in its quality of guarantor.
 - This tension is not profitable, resulting in lower total debt and tax savings, if default costs are moderate.

Which Firm Provides Support?

- Theorem 5: If $X_1 = X_2$ in distribution, then 1 supports 2 if - other things being equal - $\alpha_1 > \alpha_2$ and/or $\tau_1 < \tau_2$;
 - the guarantor is the firm that levers up less even as stand alone, because of higher default costs or lower tax rates

Holding-Subsidiary and Mergers

- Theorem 4: Value HS > Value M if either
 - 1. cash flows are equal in distribution and perfectly correlated, or
 - 2. cash flow correlation is high and either volatilities differ or volatility is high

1. In M each activity is unable to rescue the other because of equal debt. In HS lower debt in H preserves rescue.

2. By Th.1 HS have higher value than SA. But Leland (07) shows that SA dominate M under condition 2.

Stylized facts on HS, debt and taxes

- **HS are pervasive**: business groups, multinationals, private equity, SPV, LBOs...
- **Groups** have *larger debt* than Stand Alone counterparts
 - Masulis et al. 2008; Bae et al., 2002; Chang, 2003;
 Dewaelheyns et al., 07; de Jong et al., 2009
- Thin Capitalization Rules in most countries
- H.M.Revenue & Customs:

"Thin capitalisation can arise where funding is provided to a company by a third party, but with guarantees to the lender by another group company (typically the overseas Parent). The effect of funding with Parentally- guaranteed debt is, potentially, excessive interest deductions."

Numerical Results

- Leland Base case (BBB calibrated, $\rho=0.2$)
- <u>Identical</u>, and Gaussian, cash flow distributions

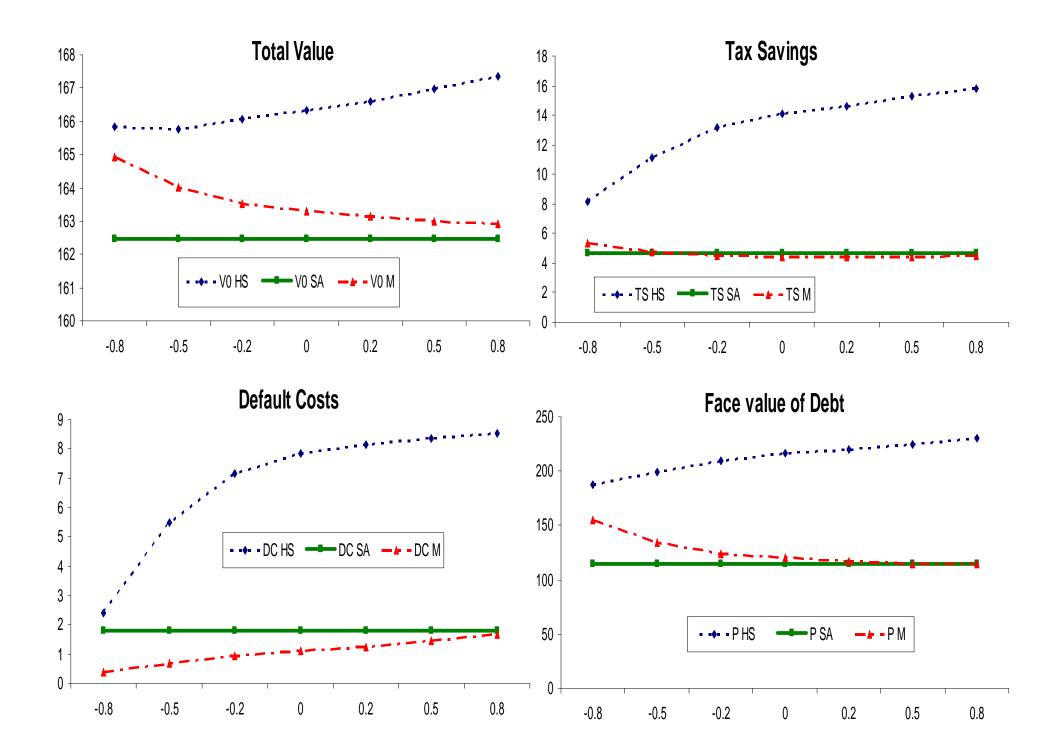

Variables	Symbols	Values
Annual Riskfree Rate	r	5.00%
Time Period/Debt Maturity (yrs)	T	5.00
T-period Riskfree Rate	$r_T = (1+r)^T - 1$	27.63%
Capitalization Factor	$Z = (1 + r_T)/r_T$	4.62
Unlevered Firm Variables		
Expected Future Operational Cash Flow at T	Mu	127.63
Expected Operational Cash Flow Value (PV)	$X_0 = Mu/(1+r)^T$	100.00
Cash Flow Volatility at T	Std	49.19
Annualized operating Cash Flow Volatility	$\sigma = Std/T^{0.5}$	22.00
Tax Rate	au	20%
Value of Unlevered Firm w/Limited Liability	V_0	80.05
Value of Limited Liability	L_0	0.057

Table 1: Base Case Parameters

	Symbols	-		Values		
		Stand Alone	Holding	Subsidiary	1/2 HS	1/2 Conglom
Face Value of Debt	P^*	<mark>57.10</mark>	0	220	110	<mark>58.5</mark>
Default Threshold	X^{d*}	67.65	0	249.27	-	69.64
Tax Shield	X^{Z*}	14.89	0	102.93	-	13.94
Leverage Ratio (%)	D^*_0/ u^*_0	51.81	0	99.9	70.26	54.62
Annual Yield Spread of Debt (%)	ý	1.23		8.45	-	0.6
Levered Firm Value	$\nu_0^* = D_0^* + E_0^*$	<mark>81.47</mark>	<mark>49.46</mark>	117.1 <mark>3</mark>	<mark>83. 29</mark>	<mark>81.57</mark>
Tax Savings of Leverage	TS_0^*	2.32	0	<mark>14.62</mark>	<mark>7.31</mark>	<mark>2.18</mark>
Expected Default Costs	DC_0^*	<mark>0.89</mark>	0	<mark>8.13</mark>	4.07	<mark>0.61</mark>

Table 1: Optimal Capital Structure and Value

The Table reports the optimal values of the different arrangements under the base case assumptions. The "Stand Alone" column refers to a non guaranteed unit. The "holding" and "subsidiary" columns refer respectively to the figures of a guaranter and a beneficiary unit of a conditional guarantee. The columns "1/2 HS" and "1/2 Congl" report respectively the figures of an HS and of a Merger divided by 2 to be comparable with the Stand Alone column.

Conclusion

- This paper models for the first time the provision of inter-corporate guarantees.
- It offers a rationale for the diffusion of Holding-Subsidiary structures without relying on previous insights relating to internal capital markets and expropriation of minority shareholders.
- It explains their observed reliance on debt and their high tax gains, which is of concern to tax authorities.
- Future work
 - Generalization
 - Welfare: do guarantees induce too large bankruptcy costs?