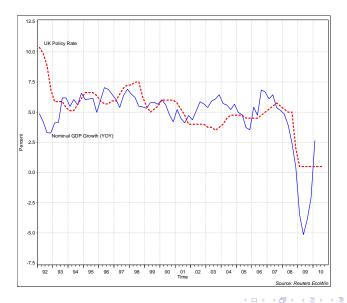
Roundheads versus Cavaliers: An Early Assessment of Quantitative Easing "...I wouldn't start from here if I were you..."

Professor Jagjit S. Chadha

University of Kent and Cambridge CIMF

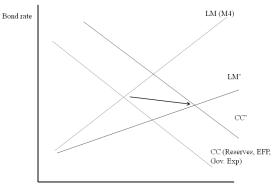
13th May 2011


School of Economics (KSE)

National Bank of Serbia Seminar

13th May 2011 1 / 21

- Asset Purchase Facility borrows £200bn reserves at Bank Rate and uses them to buy bonds from the non-bank financial sector at an average coupon of 5%
- Unsterilised open market operation with objective to get nominal GNP growth back to 5% or more:
- Implemented to offset zero bound and planned to be withdrawn gradually;
- ② Relaxes government's present value budget constraint;
- Ortfolio Balance effect for non-bank financial intermediaries;
- Announcement effects;
- Sank lending.


Basic Policy Idea

School of Economics (KSE)

13th May 2011 3 / 21

Output and Interest Rate Effects

Output

• Reserves issuance pushes out LM curve and also CC curve as external finance premia are relaxed and demand shifts out

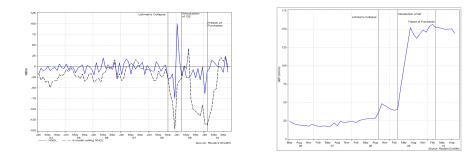
School of Economics (KSE)

National Bank of Serbia Seminar

	Amount of new unsterlised	Cumulative total of unsterilised	Unsterilised asset purchases as percentage of net debt	
Announcement Date	asset purchases $(\pounds Bn)$	asset purchases (£Bn)		
11th February 2009	75	. 75	10.1	
5th March 2009	50	125	16.1	
7th May 2009	50	175	21.8	
6th August 2009	25	200	23.7	
5th November 2009	0	200	23.1	

э

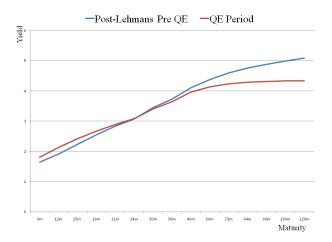
• • • • • • • • • • • •


Announcement Effects II

Total impact of QE over even	t study on k	ey variables				
		Level		Slope		Curvature
Gilts Yields	-102 bp			-45.7 bp		-39 bp
Corporates Yields (AAA)	-72.5 bp			-34.9 bp		82.5 bp
Inflation Forwards		5 Years		10 Years		20 Years
:		-36 bp		-38 bp		-72 bp
LIBOR Spread		3 Months		6 Months		12 Months
		39.1 bp		38.5 bp		39.5 bp
LIBOR-OIS Spread		1 Month		3 Months		
		19.7 bp		26.8 bp		
FTSE Index Values	All Share	Pharmaceuticals	Mining	Mobile Telecoms	Banks	Oil & Gas Producers
(% change)	0.35	0.383	-4.95	-6.34	-0.82	6.63
Stocks in Major UK Banks		HSBC	Standard Chartered	RBOS	Barclays	
(% change)		4.35	2.13	-21.98	-34.43	
Exchange Rate	Euro/Sterling			US\$/Sterling		
(% change)		3.23		3.05		

School of Economics (KSE)

(日) (周) (三) (三)


Monetary Analysis

• £200bn split between increase in reserves and creation of non-deposit liabilities (recapitalisation)

13th May 2011 7 / 21

Government Liability Curve

• By announcement effect - QE has flattened the yield curve let's compare to the macro-finance yield curve

School of Economics (KSE)

National Bank of Serbia Seminar

13th May 2011 8 / 21

- The short rate is the sum of two latent factors; level and slope
- $i_t = \delta_0 + L_t + S_t$
 - Monetary policy acts through a Taylor Rule. The yield curve factors are connected to π_t and y_t
 - The level is the perceived inflation objective of the CB: $L_t = \rho L_{t-1} + (1 - \rho_L) \pi_t + \varepsilon_{L,t}$
 - The slope is set by CB to stabilise π_t and y_t : $S_t = g_y y_t + g_\pi (\pi_t - L_t) + u_{S,t}$ where $u_{S,t} = \rho_u u_{S,t-1} + \varepsilon_{S,t}$

Rudebusch and Wu (2008) Structural Model

• New Keynesian Structure drives macroeconomy

$$\pi_{t} = \mu_{\pi} L_{t}^{m} + (1 - \mu_{\pi}) \left(\alpha_{\pi 1} \pi_{t-1} + \alpha_{\pi 2} \pi_{t-2} \right) + \alpha_{y} y_{t-1} + \varepsilon_{\pi,t}$$

$$y_{t} = \mu_{y} E_{t} y_{t+1} + \left(1 - \mu_{y}\right) \left(\beta_{y1} y_{t-1} + \beta_{y2} y_{t-2}\right) - \beta_{r} \left(i_{t-1} - L_{t-1}^{m}\right) + \varepsilon_{y,t}$$

• Standard no-arbitrage formulation for the yield curve

$$\Lambda_t = \lambda_0 + \lambda_1 X_t; \ y_t \left(n \right) = \frac{1}{n} \left(a_n + b'_n X_t \right)$$

Diebold, Rudebusch and Aruoba (2006) Non-Structural Model

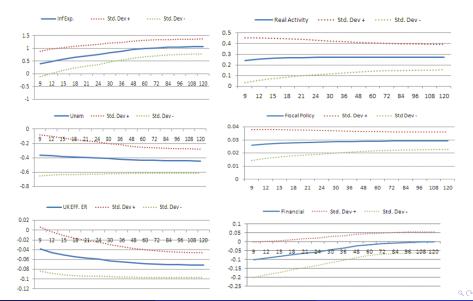
•
$$y_t(\tau) = L_t + S_t\left(\frac{1-e^{\tau\lambda}}{\tau\lambda}\right) + C_t\left(\frac{1-e^{\tau\lambda}}{\tau\lambda} - e^{\tau\lambda}\right)$$
 where lambda is fixed

and the
$$L_t$$
, S_t and C_t are time varying
• $\begin{pmatrix} L_t - \mu_L \\ S_t - \mu_S \\ C_t - \mu_C \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} L_{t-1} - \mu_L \\ S_{t-1} - \mu_S \\ C_{t-1} - \mu_C \end{pmatrix} + \begin{pmatrix} \eta_t (L) \\ \eta_t (S) \\ \eta_t (C) \end{pmatrix}$

• The state space system is then written in a vector/matrix notation as: $(f_t - \mu) = A(f_{t-1} - \mu) + \eta$ and $y_t = \Lambda f_t + \varepsilon_t$. Where where $f'_t = (L_t, S_t, C_t, CU_t, INFL_t, FFR_t)$. This methodology allows for bidirectional feedback between the interest rates and the macroeconomy.

School of Economics (KSE)

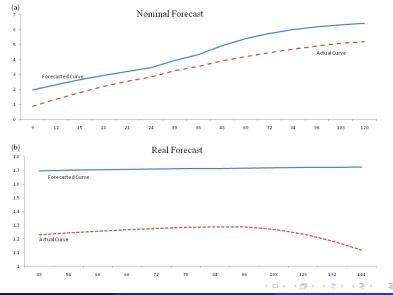
Estimated Impact Oct. 1992 to Feb. 2009


Nominal	October 1992 to February 2009				
	Level	Slope	Curvature		
Constant	7.38379	0.255671	1.64982		
	(0.3248)**	(0.3663)	(0.4528)**		
Trend	-0.0155141	-0.00925716	-0.0131344		
	(0.003090)**	(0.003481)**	(0.004306)**		
Inflation Exp.	1.15956	-1.11033	-0.842676		
	(0.1363)**	(0.1535)**	(0.1650)**		
Real Activity	0.274424	-0.168530	0.155721		
	(0.05551)**	(0.06145)**	(0.07722)*		
Unemployment	-0.455764	0.0572309	0.215328		
	(0.07710)**	(0.08346)	(0.09933)*		
Financial Returns	0.0128929	-0.0689577	-0.278671		
	(0.02611)	(0.02912)*	(0.03641)**		
Libor	0.671020	0.671423	0.844724		
	(0.1188)**	(0.1325)**	(0.1665)**		
IFO	-0.0448944	0.111213	0.113856		
	(0.01140)**	(0.01288)**	(0.01632)**		
German Ret. Sales	-0.0138904	0.0931447	0.148029		
	(0.03021)	(0.03396)**	(0.04277)**		
U.S. Non-Farm Pay.	-0.373923	0.110858	0.00064		
	(0.05747)**	(0.06487)	(0.07922)		
Feds Funds Rate	0.367788	-0.113737	-0.00702		
	(0.03897)**	(0.04394)*	(0.05574)		
BoE Policy Rate	-0.0228950	0.340386	-0.253459		
	(0.06804)	(0.07724)**	(0.09650)**		
Fiscal Policy	0.0296201 (0.003065)**	-0.00976801 (0.003459)**	0.003389 (0.004397)		
Euro Effective ER	0.0635058	-0.0725216	-0.0948235		
	(0.01059)**	(0.01187)**	(0.01487)**		
Dollar Effective ER	0.0219838	-0.0293055	-0.0278929		
	(0.009725)*	(0.01098)**	(0.01361)*		
UK Effective ER	-0.0747123	0.0857165	-0.0129110		
	(0.01178)**	(0.01346)**	(0.01660)		

School of Economics (KSE)

National Bank of Serbia Seminar

æ


Impulse Responses of Forwards

School of Economics (KSE)

13th May 2011 13 / 21

The Impact of QE on Forwards

School of Economics (KSE)

National Bank of Serbia Seminar

13th May 2011 14 / 2

Households

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \phi_t \Bigg[\frac{\frac{1-\frac{1}{\theta}}{c_2}}{1-\frac{1}{\sigma}} - \frac{\frac{1+\varphi}{n_t+\varphi}}{1+\varphi} + \frac{\chi_m^{-1}}{1-\sigma_m^{-1}} \left(\frac{M_t}{P_t}\right)^{1-\frac{1}{\sigma_m}} \Bigg]$$

+ a budget constraint u Households supply labour Recieve transfers from gov. and dividends

Firms

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \bigg[P_t(i) Y_t(i) - W_t n_t(i) - \frac{\chi_P}{2} \bigg[\frac{P_t(i)}{P_{t-1(i)}} - 1 \bigg]^2 P_t Y_t \bigg]$$

Monopolistically competitive firms profit maximisation is subject too aggregate prices and the productivity of labour

Conventional Monetary Policy $\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R)(\alpha_{\tau} \hat{\pi}_t + \alpha_{\tau} \hat{x}_t) + \varepsilon_t^R$ Monetary policy shock

Government Budget Constraint

$$\hat{\hat{b}}_t + \frac{m}{b}(\hat{m}_t - \hat{m}_{t-1}) = \delta q_t - \left[\frac{m}{b} + \frac{1+\delta}{\beta}\right] \hat{\pi}_t + \left(\frac{1}{\beta} - \theta\right) \hat{b}_{t-1} - \frac{\delta}{\beta} q_{t-1} \quad \hat{R}_t = E_t \hat{R}_{L,t+1} + \nu \left(\hat{b}_t - \hat{b}_{L,t}\right)$$

No government spending The government issues short term debt b₁ and long term debt b_{Lt} Sells debt to central banks and households

Interest Rates

 R^A

Returns to Households
$$\hat{R}_{t}^{A} = \frac{1}{1+\delta}\hat{R}_{t} + \frac{\delta}{1+\delta}E_{t}\hat{R}_{L,t+1}$$

 \hat{R} Short term nominal R_{Lt} Long term nominal $E_t \hat{R}_{Lt+1} = \beta E_t \hat{V}_{t+1} - \hat{V}_t$ $\hat{r}_{\cdot}^* = \rho \hat{r}_{t-1}^* + \varepsilon_t$ r: Natural Real Rate Aggregate demand shock

Unconventional Monetary Policy

 $q_t = \rho_a q_{t-1} + \varepsilon_t^q$ Asset purching shock

Fin. Intermediaries

$$\hat{R}_{t-1} = \hat{R}_{t} = E_{t} \hat{R}_{L,t+1} + v (\hat{b}_{t} - \hat{b}_{L,t})$$

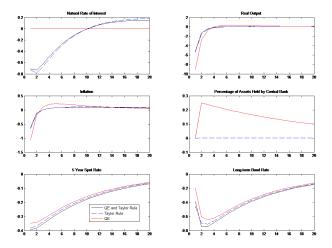
Accept deposits from households at RA Earn profits on R, and RL,

Market clearing

 $\hat{h}_{1,1} = -a_1 + \hat{V}_1$

(日) (周) (三) (三)

Supply of bonds available to households is taken up by financial intermediaries


Government purchases offset the household preference for short term bonds

School of Economics (KSE)

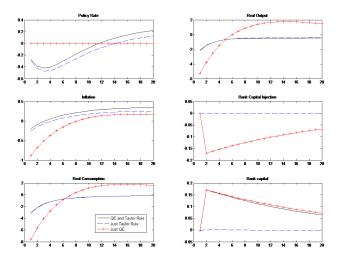
13th May 2011

3

Portfolio Effects and AD - Zero Bound

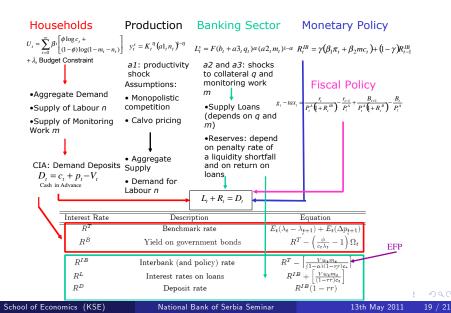
э

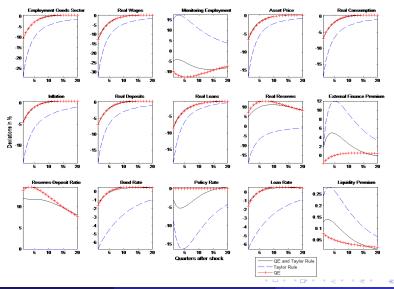
(日) (同) (三) (三)


Households	Production	Banks	Monetary Policy
Consume and produce	Monopolistic competition	Provide loans to households subject to a	Conventional Policy Rule
	Calvo- pricing	monitoring cost λ	$R_t = \rho R_{t-1} + (1 - \rho)(\alpha_{\pi}\pi + \alpha_{Y}Y + \alpha_{K}K)$
Standard intertemporal		Take deposits from households and pay	Inclusion of K reflects financial stability concerns
preferences over consumption	Production function	deposit rate R which equals the policy rate	
$-\sigma C_t = -\sigma E[C_{t+1}] + R_t - E[\pi_{t+1}]$	$Y_t = Z_t + \alpha K_{t-1} + (1-\alpha)H_t$		Unconventional Policy (τ) - a bank levy/subsid
Euler consumption equation	where Z is TFP	Households can only finance investment with bank loans	$\tau = v(E[R_{t+1}^{k} - R_{t+1}] - (R_{t}^{k} - R_{t})$
		so stock of physical capital equals level of bank loans	
Hold deposits with banks and	Labour market equilibrium	$q_t K_t = L_t$	
need loans to finance	$Y_t - H_t + X_t - \sigma C_t = \varkappa H_t$	Banks hold no assets other than loans so	Interest Rates
investment activity		$L_t = B_t + D_t$	R = Policy/Deposit Rate (short term nominal)
			Rk = Return on Physical Capital
		Bank capital is defined by	
		$B_t = \gamma \left[\theta_2 (R^k - R) D_{t-1} + R^k B_{t-1} + \theta_1 R R_t^k - \theta_2 R R_{t-1} \right] - \tau$	
		and bank leverage by	
		$L_t - B_t = \theta_1 R_{t+1}^k - \theta_2 R_t - \lambda_t$	

э

Image: A mathematical states and a mathem


æ


Bank Capital and AD

3

(日) (同) (三) (三)

School of Economics (KSE)

National Bank of Serbia Seminar

13th May 2011 20

- Raw estimates suggest 100bp from announcement effects and a similar amount from macro-finance yield curve
- Theoretical models find limited role for portfolio balance effect but significantly more when credit policy acts on bank capital or on bank liquidity models do not have *long and variable lags*...
- Question of whether to purchase more illiquid/riskier assets
- Work on Exit Strategy from fiscal, low rates and QE
- Consider case for negative QE or bank capital taxes in a boom
- Basel III is about stocks but our models improve business cycle dynamics...