Interest Rate Trap

Jin Cao (Norges Bank) and Gerhard Illing (LMU) 04 November 2011, National Bank of Serbia

%NB≫ NORGES BANK

Outline

Introduction

The interest rate trap What's new

The model

Banks in liquidity transformation Dynamic constrained efficiency Central bank as lender of last resort

The low interest rate trap

Dynamic consistent equilibrium Dynamic inefficiency and liquidity rules

Conclusion

Interest rate trap

- "The low rates introduced ... from 2002-2004 created momentum in house prices that soon became the rationale for crazy lending.... by the time risk-taking and asset price inflation again take off, it may be too late for the Fed to turn it back..." (Rajan, 2010);
- Borio & Zhu (2008): "changes in the financial system and in regulation had a profound impact on the relation between central bank policy and risk taking incentives of financial intermediaries, changing the way monetary policy affects the real side of the economy..." – risk taking channel;
- Fed (2011) "anticipates that economic conditions... are likely to warrant exceptionally low levels for the federal funds rate at least for two years...";
- Interest rate trap: low rate for crisis resolution \rightarrow too low for too long time \rightarrow next crisis...

The outline

- Endogenous model to explain the banks' response to monetary policy, or, "risk-taking channel"
 - □ Allen et al. (2011): "constrained efficiency" in crisis resolution;
 - But: why is there crisis?
- Dynamic approach to test time consistency
 - □ Freixas et al. (2011): "first best" rules;
 - □ Unfortunately, not credible in dynamic context;
- Concentrate on banks' role in liquidity transformation
 - Central bank as lender of last resort;
 - Diamond & Rajan (2011) type resolution doesn't work;
- To maintain financial stability, regulatory rule such as LCR is not supplement to monetary policy, but itself a *pillar*.

Structure of the model

Baseline model with risk-neutral agents and real contracts. Banks' role in liquidity transformation

Investors	Entrepreneurs	
Unit endowment at t, can	$R_1 > 1$: Safe project, realized	
be stored or invested in projects	early at $t + 1$	
Investors want to consume at	$R_2 > R_1$: Risky project, may	
t + 1	be delayed until $t + 2$, with	
	probability $1-p$	
Competitive Banks		
Technology: Expertise to collect $0 < \gamma < 1$ from projects' return		
Fragile structure: Banks offer deposit contracts as commitment device		
not to abuse their collection skills		
Cost : Risk of bank runs with inefficient liquidation $0 < c < 1$ before		
<i>t</i> + 1		

Agents preference, & technology

- Investors and firm entrepreneurs from overlapping generations, infinitely lived banks;
- Banks: expertise to collect $0 < \gamma < 1$ from projects' return;
- Generation t investors, live for 2 periods
 - \Box Born with unit endowment at *t*, deposit in the banks;
 - □ Observe signal of bank return at t + 0.5, run or wait;
 - □ If not run, withdraw and consume at t + 1, exit.

t	t + 0.5	t+1	t + 1.5	<i>t</i> + 2
Gen. $t - 1$: Withdraw and				
consume				
Gen. t: Deposit in the	p_t gets revealed; decide	If no run, withdraw and		
banks	whether to run	consume		
		Gen. $t + 1$: Deposit in the	p_{t+1} gets revealed; decide	If no run, withdraw and
		banks	whether to run	consume
				Gen. $t + 2$: Deposit in the
				banks

Agents preference, & technology (cont'd)

- Generation t entrepreneurs, live for 3 periods, each running one project starting from t. Type of entrepreneurs distinguished by their projects:
 - \Box Safe: return $R_1 > 1$ at t + 1;
 - □ Risky: return $R_2 > R_1 > 1$ at t + 1 with probability $p_t < 1$, or postponed to t + 2
- Probability p_t are i.i.d., can take two values
 - \Box Normal state *p*, with prob. $\pi \rightarrow 1$;
 - $\Box \quad \text{Crisis state } \underline{p} < p.$
- Entrepreneurs are indifferent in the timing of consumption.

Timing: static version

Investors get deposit	Run		
contract d_0	Wait	Withdraw	
t = 0: p unknown	<i>t</i> = 0.5: <i>p</i> revealed	t = 1	t = 2
Bank a	·····>	R_1	
decides $1-\alpha$	·····>	R ₂ with	R ₂ with
		prob. <i>p</i>	prob. $1-p$
		с	
		L	iquidity Trade
		N	

Entrepreneurs	Safe Projects>	$(1-\gamma)R_1$	
	Risky Projects>	$(1-\gamma)pR_2$	
t = 0	t = 0.5	t = 1	t = 2
Bank a	>	γR_1	
$1-\alpha$	>	γpR_2	$\gamma(1-p)R_2$

Timing: dynamic version

t	t + 0.5	<i>t</i> + 1	<i>t</i> + 1.5	t+2
Banks: Collect late returns of	If experience run, liquidate &	Collect late returns of proj.	If experience run, liquidate &	Collect late returns of proj. t;
proj. t - 2; repay early gen.	exit; otherwise continue	t - 1; repay early gen. $t - 1$	exit; otherwise continue	repay early gen. t ent.; collect
t - 2 ent.; collect early		ent.; collect early returns of		early returns of proj. $t + 1$;
returns of proj. $t - 1$;		proj. t ; liquidity trade with		liquidity trade with early gen.
liqudity trade with early gen.		early gen. t ent.; repay gen. t		t + 1 ent.; repay gen. $t + 1$
t-1 ent.; repay gen. $t-1$		investors; contract with gen.		investors; contract with gen.
investors; contract with gen. t		t + 1 investors; invest		t + 2 investors; invest
investors; invest $(\alpha, 1 - \alpha)$		$(\alpha, 1 - \alpha)$ on proj. $t + 1$		$(\alpha, 1 - \alpha)$ on proj. $t + 2$
on proj. t				
Entrepreneurs: Late proj.	If experience run, all projects	Late proj. $t - 1$ mature; early	If experience run, all projects	Late proj. t mature; early
t - 2 mature; early gen.	terminated; otherwise	gen. t - 1 ent. repaid; early	terminated; otherwise	gen. t ent. repaid; early proj.
t – 2 ent. repaid; early proj.	continue	proj. t mature; gen. t's	continue	t + 1 mature; gen. $t + 1$'s
t-1 mature; gen. $t-1$'s		liquidity trade with bank;		liquidity trade with bank;
liquidity trade with bank; get		loans for proj. $t + 1$		loans for proj. $t + 2$
loans for proj. t				

Market equilibrium

- The market equilibrium is featured by
 - □ Banks invest $\alpha^* = \frac{\gamma p}{\gamma p + (1 \gamma)\frac{R_1}{R_2}}$, maximizing investors' return; and this makes
 - □ Liquidity market rate r = 1, minimizing the intermediate borrowing cost;
 - \Box Bank run happens when crisis state *p* gets revealed.
- The market equilibrium is constrained efficient since
 - Impossible to reshuffle resources between generations;
 - □ The costly bank run in the crisis implies loss in social welfare.

Nominal contract and role of central bank

- Nominal contract and money-in-the-market pricing
 Price = real goods + fiat money real goods;
- The role of central bank as lender of last resort
 - □ Inject fiat money in need, against collateral.

Nominal contract and role of central bank (cont'd)

- The central bank's monetary policy rule à la Freixas et al (2011):
 - In crisis state, lending fiat money at r^m = 1: crisis resolution via inflating the economy;
 - □ In normal state, keep $r^m > \overline{r}$ to deter free-riding on the cheap liquidity and induce efficient market solution;
- The result: Pareto improvement
 - Avoiding costly bank run by fulfilling the *nominal* contract, in line with Allen et al. (2011);
 - □ While the investors' *real* return is lower, they are still better off than bank run.
- Unfortunately, the policy is *dynamic* inconsistent!

The low interest rate trap

• Suppose a crisis at t + 0.5 so that $r_{t+1}^m = 1$

□ Central bank: $r_{t+2}^m > \overline{r}$ almost for sure;

 \Box What's the banks' response at t + 1?

Dynamic inefficiency and liquidity rule

- Unique dynamic *consistent* equilibrium is featured by
 - Central bank always keeps rate too low for too long time;
 - Banks always take excessive liquidity risk;
 - Investors always worse off in terms of *real* consumption;
 - Low interest rate trap is the unique dynamic consistent equilibrium!
- Lessons?
 - Systemic risk is already built in when monetary policy is lax, making it difficult to raise the rate again;
 - Monetary policy is dynamic inconsistent as financial stabilizer;
 - Policy analysis needs dynamic endogenous approach, taking into account the feedback from the economy;
 - $\hfill\square$ Need ex ante liquidity regulation to fix the risk taking channel: liquidity coverage ratio α^* , etc.
- Next step: understanding liquidity requirements.

Liquidity rules in Basel III

- Liquidity coverage ratio (LCR) to address liquidity shock
 - □ Sufficient liquid assets to withstand a 30-day stressed funding scenario;
 - Unemcumbered, high quality liquid assets that can be converted to cash to meet liquidity demand;
 - $\Box LCR = \frac{\text{Stock of high quality assets}}{\text{Net cash outflows over 30 days}} \ge 100\%;$
- Net stable funding ratio (NSFR) to address liquidity mismatch
 - Limit liquidity mismatch between assets and liabilities over a one-year horizon;
 - □ Reduce emphasis on short-term, whole sale funding;
 - Compare maturity profile and liquidity of assets to liabilities to ensure fundings are met with stable financing sources;
 - $\square NSFR = \frac{\text{Available stable funding}}{\text{Required stable funding}} \ge 100\%;$
- Principles for Sound Liquidity Risk Management and Supervision.

Liquidity rules and banks' strategies

- Liquidity transformation, maturity mismatch, and banks' liquidity management
 - "Finance as you go"
 - Return to capital market / borrow from investors when liquidity needs arise;
 - $\blacksquare However, moral hazard / adverse selection \rightarrow market freeze in downturn;$
 - "Liquidity hoarding"
 - Secure credit lines / hold liquid assets, etc.;
 - (In-)efficiency and procyclicality;
- Further research to understand
 - How liquidity requirements change the banks' behavior in liquidity management;
 - □ The role of lender of last resort policy, and how liquidity rules fix endogenous moral hazard problem.

Conclusion

- A model to understand the "risk-taking channel" of monetary policy
 - A finance model with some macro twist, focus on the banks' role in liquidity transformation;
 - To understand the impact of monetary policy on financial stability in an endogenous framework;
 - □ To understand the credibility of policy rules in the dynamic approach;
- Still much to do
 - To understand the concept of liquidity in the standard macroeconomic framework;
 - □ To understand the banks' response to liquidity requirements and the implication on systemic risk.