

Structure and Stability in Complex Systems

An empirical analysis of the interbank payment system ARTIS Evidence

Claus Puhr, Stefan W. Schmitz, OeNB

Belgrade, September 09, 2011

Presentation prepared for the Friday Research Seminar at the National Bank of Serbia

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Motivation and objectives

Motivation

- OeNB is in charge of payment system oversight
- ESCB/OeNB objective: smooth functioning of the payment system

Objectives

- Statistical analysis for a better understanding of ARTIS
- Analyse impact of operational risk in payment systems
- On the system and the individual bank level

Policy implications?

Research questions

- Based on Schmitz / Puhr (2006, 2007, 2009)
- We operate with real rather than simulated liquidity data
- We run various operational stress scenarios
- We observe large variations across scenarios and days
- We try to uncover systemically important accounts
- We try to explain variations across scenarios and / or days
- In particular with regard to payment system structure / topology

Methodological approach

Network theory

- Robustness studies
- Typology of flow processes
- Measures of network structure

Simulation studies

Simulations of operational shocks generate contagion

Panel data econometrics

Variations of contagion across scenarios and / or days

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Network theory

- Robustness studies (Albert et al. 1999, 2000: Internet)
 - Nature of shock: removal of nodes and links from network
 - Measure of impact: Connectivity measured by size of largest cluster and average path length

Robustness in ARTIS

- ARTIS is a physically complete network
- Flow of liquidity not equal to flow of information in the internet
- Connectivity inappropriate conceptualisation of network stability
- Incoming links to stricken account not removed

Payment system research

- Simulation studies (Leinonen (ed.) 2005, 2007, 2009)
 - Many conducted with the Bank of Finland Payment System Simulator
 - Publicly available tool to simulate payment systems
 - Based on real and / or simulated transaction data
- Network topology studies (Soramäki et al. 2006)
 - The topology of interbank payment flows in FedWire
 - For a comparison of network indicators across networks refer to Schmitz et al. 2008

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Data requirements

Transaction data

- Payer, payee, value, time stamp
- If available prioritisation and underlying economic purpose

Liquidity data

Beginning of day balance and collateral

Institutional data

- Settlement algorithm and attribution of accounts to economic entities
- Institutional features: e.g. stop-sending rule, through-put rules, ...

Additional data

Qualitative information (e.g. experience of operators)

Simulations

- Assumption: one day incapacitation to submit payments
- Sample period: 16 November 2005 to 16 November 2007 (497 days)
- 63 scenarios
 - 50 banks which are in GSCC on all days in the sample period
 - 13 transfer accounts which are part of the system on all days
- Matlab based simulation tool
 - Accounts for all institutional features of ARTIS (e.g. stop-sending rule, direct debit)
- 31 311 simulations (63×497) with 650 mn transactions

€NB

Simulation results

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Network indicators

- Appropriate measure of network structure?
 - Directed / undirected? Weighted / unweighted?
 - Network level (44) & node level (stricken bank) (71)
- Selection based on
 - Comparability (e.g. indicators that were used in other studies)
 - Albert et al. (1999, 2000: Internet) average path length
 - Boss et al. (2004: Interbank liabilities) betweenness centrality
 - Theoretical considerations
 - Driven by typology of flow processes (Borgatti 2005)
 - Route / transfer characteristics
 - Liquidity follows a walk and is transferred

Node-level network indicators vs. unsettled payments

Correlation between volume, value and network indicators

	Volume	Value	Avg. PL	Degree	Conn.	Clust.	Btw. C.	Dissim.
Volume	100%	89%	-77%	84%	83%	-57%	89%	85%
Value		100%	-70%	76%	75%	-52%	77%	78%
Avg. PL			100%	-96%	-97%	62%	-79%	-85%
Degree				100%	99%	-72%	8.5%	95%
Conn.					100%	-72%	85%	93%
Clust.						100%	-56%	-78%
Btw. C.							100%	87%
Dissim.								100%

Source: OeNB. Average Path Length (Avg. PL), Connectivity (Conn.), Clustering Index (Clust.), Betweenness Centrality (Btw. C.), Dissimilarity Index (Dissim.).

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Dependent variables

- Measures of contagion (excl. stricken bank)
 - Value of unsettled payments at end of day
 - Number of unsettled payments at end of day
 - Number of banks with unsettled payments at end of day

Independent variables

- Network level (constant across panels but not across time [Z])
 - Aggregate liquidity
 (BoD balances + unencumbered collateral across banks)
 - Network indicators at the network level
- Node level (varies across panels and across time [X])
 - Liquidity loss due to operational problem at stricken bank (liquidity sink/drain, unrecieved payments)
 - Network indicators at the node level
- Dummy for transfer accounts (Dxunreceived payments)

Model

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{63} \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{63} \end{bmatrix} \beta_1 + [Z]\beta_2 + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{63} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{63} \end{bmatrix}$$

$$E[\varepsilon_{it}|x_i, v_i] = 0 \qquad T = 1...497, \quad N = 1...63.$$

$$Var[\varepsilon_{it}|x_i, v_i] = \sigma^2 I_T$$

$$Cov[\varepsilon_{it}, \varepsilon_{js}] = 0 \quad if \quad t \neq s \quad or \quad i \neq j.$$

Assumptions

- Cross-panel conditional homoskedasticity
 - Variance of error terms constant across panels (and across time)
- Serial independence
 - •Error terms are serially uncorrelated within panels
- Cross-panel independence
 - Error terms are independent across panels
- Strict exogeneity
 - Error terms and explanatory variables are independent

Estimation procedure

- Estimate fixed-effects model (yields inconsistent standard errors)
- Correct for cross-section conditional heteroskedasticity, autocorrelation and cross-section-dependence
- Prais-Winsten regression, PCSE (Panel-Corrected Standard Errors)
 - Accounts for heteroskedasticity and cross-panel correlation
 - Additional option panel-specific autocorrelation
- Estimate three models without network indicators
 - One for each measure of contagion
 - Add individual network indicators at node- and network-level
 - One at a time, due to high correlation between network indicators

Basic models used for tests

Model 1

 $simdefaults_{it} = \alpha_{it} + \beta_1 Liquidity_t + \beta_2 simunrvol_{it} + \beta_3 TransUnrVol_{it} + \beta_4 nodeavgpath_{it} + \beta_5 netavgpath_t + u_i + \varepsilon_{it}$

Model 2

 $simqueuednum_{it} = \alpha_{it} + \beta_1 Liquidity_t + \beta_2 simunrdvol_{it} + \beta_3 TransUnrVol_{it} + \beta_4 nodeavgpath_{it} + \beta_5 netavgpath_t + u_i + \varepsilon_{it}$

Model 3

 $simqueuedvol_{it} = \alpha_{it} + \beta_1 Liquidity_t + \beta_2 simunrvol_{it} + \beta_3 TransUnrVol_{it} + \beta_4 nodeavgpath_{it} + \beta_5 netavgpath_t + u_i + \varepsilon_{it}$

Estimation results (1/2)

- Explanatory value of models is high (40 to 70 per cent)
 - Much higher for between than for within panel variation
- Results robust across specifications & estimation methods
- Higher liquidity reduces contagion effect
- Higher liquidity loss increases contagion effect
 - Impact highest for value of unsubmitted payments
 - Less for liquidity drain and liquidity sink
 - Variable has very high explanatory power
- Transfer accounts cause significantly more contagion

Estimation results (2/2)

- Higher value of transactions in the network reduces contagion
 - Time trend?
- At the network level no indicator is significant in all three models
- At the node level three network indicators are significant in all models
 - Higher node degree and connectivity increase contagion
 - Higher average path length decreases contagion
 - More central nodes cause more contagion
 - Additional explanatory value:
 - 3 per cent regarding the number of contagiously defaulting banks
 - Negligible in the other two models

Agenda

Motivation

Related Research

ARTIS Simulations

Network Indicators

Panel Data Analysis

Conclusion

Conclusion

- Number of systemically important accounts is low
 - At least one default / day: 11 transfer accounts & 28 banks
 - 0.1% of average total value / day: 7 transfer accounts & 17 banks
- Network indicators in payment systems
 - Degree seems to be adequate indicator
- Panel approach yields high explanatory value
 - Higher between scenarios than within
- Most of the variation is explained by
 - Aggregate liquidity, liquidity loss, and impact of transfer accounts
- Some network indicators at node level (!) are significant
 - Their explanatory contribution is low

Thanks a lot for your attention!

Presentation is based on:

Stefan W. Schmitz & Claus Puhr

"Structure and stability in payment networks – a panel data analysis of ARTIS simulations" in

Harry Leinonen (ed.)

"Simulation analyses and stress testing of payment networks" Bank of Finland, Scientific Monographs E42, 2009

Also available at SSRN:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1400883

Annex

Network Indicators

Panel Data Analysis:

Descriptive Statistics

Assumptions & Tests

Results

Definition of network indicators (1/3)

The average degree k of the network is calculated by summing across all (active) links originating from each node (out-degree k_i^{out}) or terminating at each node (in-degree k_i^{in}) and than averaging across nodes:

$$k = \frac{1}{n} \sum_{i} k_{i}^{out} = \frac{1}{n} \sum_{i} k_{i}^{in} = \frac{m}{n}$$

We calculated the average path length for each (active) originating node ℓ_i by averaging across terminating nodes j and than averaged across originating nodes j to derive the average path length ℓ of the entire network.

$$\ell_i = \frac{1}{n-1} \sum_{j \neq i} d_{ij}$$

$$\ell = \frac{1}{n} \sum_{i} \ell_{i}$$

Considering the maximum eccentricity \mathcal{E} (the maximum path length between any originating and any terminating node) across nodes defines the diameter D:

$$D = \max_{i} \varepsilon_{i}$$

The connectivity of the network is defined by the number of actual directed links m over the number of possible directed links n(n-1).

Definition of network indicators (2/3)

An indicator of the distance d_{ij} between nodes is the lowest possible number of links that connects each (active) node i with each other (active) node j in the network. It is referred to as shortest path length.

The betweeness centrality $C_B(h)$ of node h provides a measure of how many shortest paths d_{ij} pass through this node. Let $s_{ij}(h)$ be the number of shortest paths between all pairs of nodes i and j that pass through the node h and let s_{ij} the number of all shortest paths between all pairs of nodes i and j then

$$C_B(h) = \sum_{s \neq i \neq j} \frac{S_{ij(h)}}{S_{ij}}.$$

 $C_B(h)$ is sometimes normalised by dividing it by the number of pairs of nodes not including the node h. The betweeness centrality of the network is

$$C_B = \frac{1}{n}C_B(h)$$

Definition of network indicators (3/3)

The dissimilarity index of two neighbours nodes i and j in a network is defined as

$$\Delta_{ij} = \frac{\sqrt{\left[\sum_{h\neq i,j}^{N} \left[d_{ih} - d_{jh}\right]^{2}\right]}}{(N-2)},$$

where d_{ik} are distance measures from nodes i and j to node h. It provides a comparison of the viewpoints of the entire network from the perspective of the all pairs of neighbouring nodes. For the entire network the dissimilarity index is

$$\Delta = \frac{1}{n(n-1)/2} \Delta_{ij}$$

The clustering coefficient $C_C(h)$ of an individual node h with k_h neighbours measures how well the latter are connected among each other. The number of potential links between the k_h neighbours is $k_h(k_h-1)/2$. Let the actual number of nodes between them be E_h so that

$$C_C = \frac{E_h}{k_h(k_h - 1)/2}$$

Annex

Network Indicators

Panel Data Analysis:

Descriptive Statistics

Assumptions & Tests

Results

Descriptive statistics – dependent variables

Variable	Mean	Std. Dev.	Mi n	Max	Observati ons	
simnum~s overall	2. 607678	3. 765892	0	33	N = 31311	
between		3. 534751	. 4507042	18. 85714	n = 63	
within		1. 373103	-6. 301779	16. 75053	T = 497	
simque~m overall	7. 554757	21. 71519	0	1172	N = 31311	
between		14. 0254	. 4507042	76. 49899	n = 63	
within		16. 67194	-55. 94424	1145. 718	T = 497	
simque~l overall	1. 12e+08	3. 35e+08	0	1. 07e+10	N = 31311	
between		2. 84e+08	3680408	2. 08e+09	n = 63	
within		1. 81e+08	-1. 54e+09	9. 79e+09	T = 497	

Descriptive statistics – aggregate liquidity

Variable	Mean	Std. Dev.	Mi n	Max	Observati ons	
liqbod~e overall	7. 47e+09	8. 43e+08	5. 49e+09	1. 13e+10	N = 31311	
between		0	7. 47e+09	7. 47e+09	n = 63	
within		8. 43e+08	5. 49e+09	1. 13e+10	T = 497	
liqcol~l overall	1. 08e+10	2. 89e+09	6. 10e+09	2. 53e+10	N = 31311	
between		0	1. 08e+10	1. 08e+10	n = 63	
within		2. 89e+09	6. 10e+09	2. 53e+10	T = 497	
Liquid~y overall	1.83e+10	3. 23e+09	1. 17e+10	3. 24e+10	N = 31311	
between		0	1. 83e+10	1. 83e+10	n = 63	
within		3. 23e+09	1. 17e+10	3. 24e+10	T = 497	

Descriptive statistics – liquidity loss

Variable	Mean	Std. Dev.	Mi n	Max	Observati ons
Liquid~s overall	1. 39e+09	3. 07e+09	12032	2. 86e+10	N = 31310
between		2. 92e+09	7869281	1. 57e+10	n = 63
within		1. 02e+09	-7. 11e+09	1. 96e+10	T-bar = 496.984
simliq~n overall	7. 23e+08	1. 69e+09	0	1. 60e+10	N = 31310
between		1. 59e+09	452661.6	8. 80e+09	n = 63
within		6. 16e+08	-3.91e+09	1. 00e+10	T-bar = 496.984
simliq~k overall	6. 67e+08	1.53e+09	524	1. 29e+10	N = 31310
between		1.45e+09	1026011	6. 92e+09	n = 63
within		5.02e+08	-3. 32e+09	9. 59e+09	T-bar = 496.984

Descriptive statistics – network indicators node level

Vari abl e	Mean	Std. Dev.	Mi n	Max	Observati ons
nodede~e overall	25. 44499	19. 89985	2	105	N = 31311
between		19. 83007	6. 428571	89. 84708	n = 63
within		3. 000303	10. 34036	43. 26994	T = 497
nodeco~y overall	. 1930355	. 1510905	. 0153	. 7949	N = 31311
between		. 1503863	. 0490459	. 6821545	n = 63
within		. 0238868	. 075481	. 3372814	T = 497
nodeav~h overall	1. 86558	. 1817904	1. 2137	2. 3356	N = 31311
between		. 1782929	1. 328216	2. 102365	n = 63
within		. 0419877	1. 67934	2. 169161	T = 497
nodecl~x overall	. 5401702	. 2014584	. 1333	1	N = 31311
between		. 1873986	. 1753167	. 9800881	n = 63
within		. 0776117	. 1056149	1. 013537	T = 497
nodebe~y overall	. 013652	. 0349052	0	. 2761	N = 31311
between		. 0340873	6.04e-07	. 1833795	n = 63
within		. 0086509	0796849	. 1063725	T = 497
nodedi~x overall	. 4387912	. 1369233	. 2603	1. 0754	N = 31311
between		. 13323	. 312793	. 9046616	n = 63
within		. 0357625	. 281154	. 626754	T = 497

Descriptive statistics – network indicators network level

Vari abl e	Mean	Std. Dev.	Mi n	Max	Observati ons
netavg~e overall	12. 36032	. 3990639	11. 2609	14. 35	N = 31311
between		0	12. 36032	12. 36032	n = 63
within		. 3990639	11. 2609	14. 35	T = 497
netcon~y overall	. 0375596	. 0027451	. 0294	. 0462	N = 31311
between		0	. 0375596	. 0375596	n = 63
within		. 0027451	. 0294	. 0462	T = 497
netavg~h overall	2. 546561	. 0594155	2. 4025	2. 6833	N = 31311
between		0	2. 546561	2. 546561	n = 63
within		. 0594155	2. 4025	2. 6833	T = 497
netavgc~ overall	. 4382753	. 0279867	. 3612	. 5217	N = 31311
between		0	. 4382753	. 4382753	n = 63
within		. 0279867	. 3612	. 5217	T = 497
netavg~y overall	. 0047867	. 0002584	. 0038	. 0055	N = 31311
between		0	. 0047867	. 0047867	n = 63
within		. 0002584	. 0038	. 0055	T = 497
netavg overall	1. 269688	. 9284118	. 5946	5. 228	N = 31311
between		0	1. 269688	1. 269688	n = 63
within		. 9284118	. 5946	5. 228	T = 497

Annex

Network Indicators

Panel Data Analysis:

Descriptive Statistics

Assumptions & Tests

Results

Panel approach – the assumptions

- Cross-panel conditional homoskedasticity
 - Variance of error terms constant across panels (and across time)
- Serial independence
 - •Error terms are serially uncorrelated within panels
- Cross-panel independence
 - Error terms are independent across panels
- Strict exogeneity
 - Error terms and explanatory variables are independent

Assumption of conditional homoscedasticity across panels

Likelihood ratio test

•Compares log-likelihoods under restricted and unrestricted model based on iterated generalised least square estimates.

Model 1	LR chi2 (62) = 18501.32	Prob. = 0.00
Model 2	LR chi2 (62) = 103014.77	Prob. = 0.00
Model 3	LR chi2 (62) = 74980.00	Prob. = 0.00

Assumption of conditional homoscedasticity rejected!

Assumption of serial independence

- Wooldridge test
 - •Based on residuals of regressions in first differences which are then regressed on lagged value t-1
 - Test is robust to conditional heteroskedasticity

Model 1	F (1, 62) = 14.388	Prob. = 0.00
Model 2	F (1, 62) = 3.076	Prob. = 0.08
Model 3	F (1, 62) = 23.636	Prob. = 0.00

Assumption of serial independence rejected!

Assumption of cross-panel independence

•Pesaran, Friedman, Frees tests

Model 1	Frees = 11.116	Prob. = 0.00
	Pesaran = 363.108	Prob. = 0.00
	Friedman = 11728.05	Prob. = 0.00
Model 2	Frees = 7.06	Prob. = 0.00
	Pesaran = 147.08	Prob. = 0.00
	Friedman = 7378.70	Prob. = 0.00
Model 3	Frees = 4.81	Prob. = 0.00
	Pesaran = 120.80	Prob. = 0.00
	Friedman = 5744.16	Prob. = 0.00

•Assumption of cross-sectional independence rejected!

Random- versus fixed-effects

- •High correlation btw individual level effects and explanatory variables
- •Breusch-Pagan LR test of random effects
 - •Compares log-likelihoods under restricted and unrestricted model based on iterated generalised least square estimates

Model 1	LR test = 3.06E05	Prob. = 0.00
Model 2	LR test = 4.33E04	Prob. = 0.00
Model 3	LR test = 2.30E05	Prob. = 0.00

[•]Random-effects rejected!

Assumption of strict exogeneity

- Fundamental assumption
 - Error terms are not influenced by past, current or future values of explanatory variables
 - Values of explanatory variables are not influenced by past,
 current or future values of error terms
- Simulation design ensures strict exogeneity
 - Values of explanatory variables are empirical observations
 - Error terms cannot influence values of explanatory variables
 - E.g. banks cannot adjust liquidity holdings, node or network characteristics in response to observed error terms

Annex

Network Indicators

Panel Data Analysis:

Descriptive Statistics

Assumptions & Tests

Results

f contagious bank defaults	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	3.28	4.02	3.38	2.32	14.73	6.97	4.63	-0.93
Liquidity	13.71 -1.05E-10 -8.19	-9.69E-11 -8.05	−9.91E−11 − 9.16	-8.39E-10 - 7.87	<i>10.10</i> -9.31E-11 - 7.56	-9.40E-11 -16.00	−9.70E−11 − 7.67	-3. 05 -1.18E-10 -9. 65
SimUnrVol	1.65E-09 <i>59.21</i>	1.66E-09 <i>58.92</i>	7.77E-10 28.64	8.06E-10 <i>30.80</i>	1.01E-09 <i>38.61</i>	1.43E-09 <i>55.18</i>	1.07E-09 <i>0.00</i>	9.37E-10 <i>33</i> . <i>17</i>
Transfer*SimUnrVol	2.51E-10 <i>8.99</i>	2.52E-10 8.93	6.12E-10 23.28	6.00E-10 <i>23.92</i>	5.27E-10 <i>20.57</i>	2.58E-10 <i>9.66</i>	5.44E-10 <i>19.29</i>	5.06E-10 <i>19.42</i>
Nodedegree			9.20E-02					
Nodeconnectivity		\	59.92	1.22E+01 59.88				
Nodeavgpath					-8.09E+00			
Nodeclusterindex					-56.71	_4.00E+00 _51.65		
Nodebetweenness						-31.63	3.38E+01 26.37	
Nodedissimilarity							20.07	1.11E+01 40.07
Netvolume		-1.88E-11						
Netavgdegree		-7.76	-1.60E-01 -2.24					
Netconnectivity				−3.25E+01 − 3.25				
Netavgpath					1.51E+00 <i>2.52</i>			
Netavgclusterindex						−3.60E+00 − 3.42		
Netavgbetweeness						-3.42°	−3.42E+02 − 3.00	
Netavgdissimilarity			1					3.00E-02 0.82
R²	69.23	69.35	69.96	72.41	71.58	70.88	66.54	68.69
Relative impact of Transfer Account (in	15%	15%	79%	74%	52%	18%	51%	54%
%)				47				

# contagious		•						
${\tt unsettled}$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
payments								
Constant	7.32	9.90	-3.06	0.57	35.54	12.55	4.73	-0.36
	7. 95	10.67	-0.93	0.34	6.38	6.93	2.13	-0.35
Liquidity	-2.79E-10	-2.49E+00	-2.70E-10	-1.97E-10	-2.25E-10	-2.52E-10	-2.59E-10	-2.91E-10
	-5.65	-5. 44	-6.18	-4 .57	-4.75	-5. 43	-5.29	-6.24
SimUnrVol	6.61E-09	6.67E-09	4.97E-09	4.94E-09	5.32E-09	6.29E-09	5.59E-09	5.41E-09
	41.91	41.84	24.31	24.17	28.22	38.61	22.59	26.62
Transfer*SimUnrVol	2.40E-09	2.38E-09	3.10E-09	3.10E-09	2.95E-09	2.45E-09	2.91E-09	2.84E-09
	8.36	8.29	10.53	10.55	10.08	8.49	9.52	9.72
Nodedegree			1.80E-01					
_			13.51					
Nodeconnectivity				2.46E+01				
				13.85				
Nodeavgpath					-1.71E+01			
					-13. 92			
Nodeclusterindex					10.52	_6.25E+00		
Nodecius tel Index						-10.84		
Nodebetweenness						-10.04	5.40E+01	
nodebe:weemmess							5.65	
Nodedissimilarity							3.03	1.90E+01
Nodedissimilarity								
Netvolume		-6.67E-11						10.02
netvolume		• Output •)					
N 1		-8.15	F 10F 01					
Netavgdegree			5.10E-01					
			1.93					
Netconnectivity				3.09E+01				
				0.86				
Netavgpath					1.21E+00			
					0.56			
Netavgclusterindex						-5.29E+00		
						-1.40		
Netavgbetweeness							4.27E+02	
							1.09	
Netavgdissimilarity								5.00E-02
								0.52
R²	39.79	39.81	39.90	40.01	40.02	39.77	39.72	39.67
D 1 11 1 1 1 1								
Kelative impact of								
Relative impact of Transfer Account	36%	36%	62%	63%	55%	39%	52%	52%

Value of contagious unsettled payments	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	11
Constant	5.22E+07 5.30	7.37E+07 2.76	2.47E+07 0.59	3.63E+07 1.70	2.87E+08 4.08	5.94E+07 2.63	4.24E+07 1.44	5.35E+07 4.59	_
Liquidity	-2.70E-03 - 5.01	-2.19E-03 - 4.29	-2.70E-03 - 5.08	-2.50E-03 -4.72	-2.10E-03 -3.57	-2.68E-03	-2.62E-03 - 4 .80	-2.72E-03 - 4 . <i>97</i>	
SimUnrVol	9.56E-02 47.60	9.60E-02 47.77	9.22E-02 35.69	9.04E-02 35.17	9.09E-02 <i>38.17</i>	9.72E-02 45.99	9.65E-02 <i>33.87</i>	9.56E-02 <i>36.91</i>	
Transfer*SimUnrVol	1.59E-01 <i>34.54</i>	1.59E-01 <i>34.48</i>	1.60E-01 34.24	1.61E-01	1.61E-01 <i>34.55</i>	1.58E-01 <i>34.60</i>	1.58E-01 <i>33.08</i>	1.59E-01 <i>34.04</i>	
Nodedegree			3.33E+05 2.34						
Nodeconnectivity			2.34	6.85E+07 <i>3.63</i>					
Nodeavgpath					-5.76E+07				
Nodeclusterindex					-4.42	2.78E+07 <i>3.66</i>			
Nodebetweenness						5.00	-4.65E+07 -0.53		
Nodedissimilarity								-2.52E+06 -0.12	
Netvolume		6.20E-04 - 5.49							_
Netavgdegree		-3.49	1.76E+06 0.52						
Netconnectivity				7.28E+07 0.16					
Netavgpath					-5.32E+07 -1.92				
Netavgclusterindex						-5.39E+07 -1.11			
Netavgbetweeness							1.93E+07 0.36		
Netavgdissimilarity								5.25E+05 0.41	
R²	70.62	70.63	70.64	70.65	70.69	70.68	70.60	70.61	
Relative impact of Transfer Account (in %)	166%	166%	174%	178%	177%	163%	164%	166%	