Research Seminar of the National Bank of Serbia Belgrade - January 27, 2012

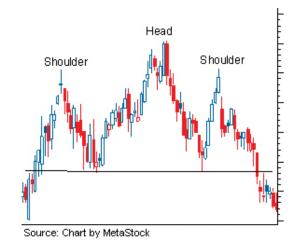
Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability

Dušan ISAKOV and Didier MARTI University of Fribourg (Switzerland)

The paper in a nutshell

Goals of the paper

- Provide new empirical evidence on the profitability of technical analysis, in particular a new set of trading rules based on moving averages.
- Analyze if the use of leverage (with debt or options) improves the performance of these strategies.
- Provide a new test of market timing


Results and contributions

- Trading rules are simulated on daily returns of the S&P 500 over the period 1990-2008.
- Complex trading rules limit the impact of data-snooping problems, outperform the simple buy-and-hold strategy and are consistent with bull and bear markets.
- Optimal lag of the long moving average is much longer than those usually investigated in the literature (400 days).
- Leverage with debt improves the performance. With options the results are mitigated.

Motivation

- Technical analysis encompasses a wide range of techniques that are supposed to be able to predict the future evolution of asset prices.
- These techniques are widely used by market participants, in particular in equity and forex markets.
- These techniques can be divided in two groups:
 - Charting trading systems, based on the occurrence of specific figures in charts of the evolution of past stock prices.
 - Example: Head-and-shoulder figure

Motivation (cont'd)

- Technical trading systems, quantitative rules trying to filter past prices to identify future trends
- Example: (Double) Moving averages (MA)

Do these rules provide accurate forecasts and do they help to generate abnormal profits/returns?

Literature

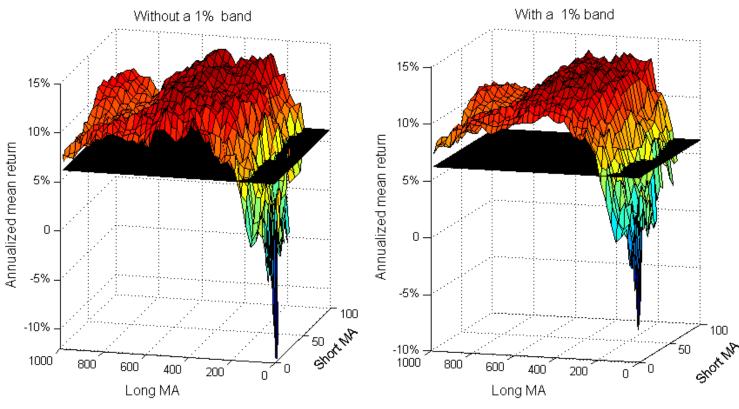
- Academic literature is very skeptical about the usefulness of these methods:
 - No theoretical justification
 - Difficult to understand, specific vocabulary/expression
 - Difficult to refute since the choice of parameters is subjective
 - Exact opposite of the weak-form market efficiency
- Early literature 1960-1990 generally concluded that these techniques (trading rules) are not able to forecast future prices and generate abnormal profits.
- Lo, Mamayski, Wang (2000) investigate charting methods, have some forecasting ability but not enough to generate abnormal profits.

Literature (cont'd)

- □ Brock, Lakonishok and LeBaron (1992) analyze 26 simple MA rules over 100 years of Dow Jones prices and find that they have predictive power and are able to generate abnormal returns.
- ☐ These results were criticized on the grounds that:
 - They don't consider transaction costs (Bessembinder and Chan(1998).
 - They are subject to data-snooping bias (Sullivan, Timmermann and White (1999).
-and are therefore impossible to achieve from an investor point of view.

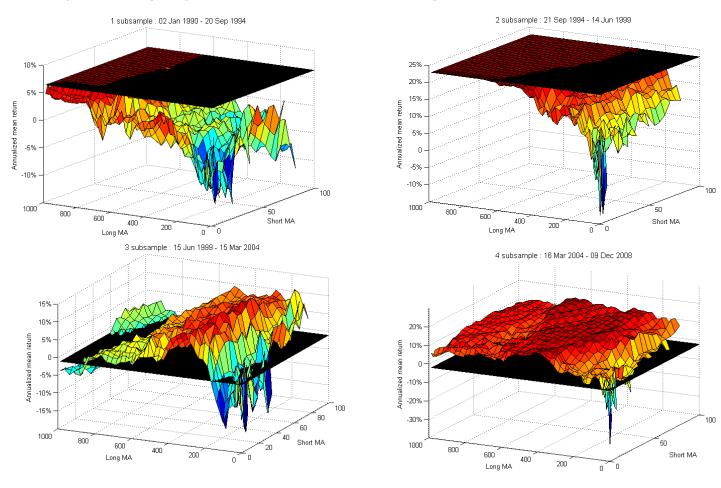
Literature (cont'd)

- ☐ The impact of data-snooping can be reduced in different ways:
 - With tests methodologies that directly take into account the datasnooping problem (White (2000), Romano and Wolf (2005) and Hsu, Hsu and Kuan (2010)).
 - With an out-of-sample approach initiated by Lukac, Irwin and Brorsen (1988) and Sullivan, Timmermann and White (1999).
 - Use complex rules, that combine different MA parameterizations on objective grounds as proposed by Skouras (2001) and Hsu and Kuan (2005).


MA rules

- ☐ Our paper investigates the profitability of complex trading rules based on MA on the S&P 500 index over the period 1990-2008
- The trading rule is the following:
 - Each day we compute two MA: a long MA (e.g. 200 days) and a short MA (e.g. 50 days).
 - If the short MA>long MA -> a buy signal is generated for the next day.
 - If the short MA<long MA -> a sell signal is generated for the next day.
- We investigate 1876 different combinations of parameters for the short and long MA.

Preliminary results


☐ (in-sample) Performance of simple MA rules

Preliminary results (cont'd)

(in-sample) Performance of simple MA rules over sub-samples

UNIVERSITAS

The trading systems

- We allow the long MA to take values up to 4 years (990 days) in order to capture long-term trends since:
 - They might be easier to discover and to take advantage than shortterm trends
 - Might correspond to the strategy of a long-term investor
- We use an out-of-sample approach that has four set of periods:

		Selection period	Evaluation period		
•	Set 1:	Jan. 1990-Jan. 1994	Jan. 1994-Dec. 1997		
•	Set 2:	Jan. 1994-Dec. 1997	Dec. 1997-Jan. 2002		
•	Set 3:	Dec. 1997-Jan. 2002	Jan. 2002-Jan. 2006		
	Set 4:	Jan. 2002-Jan. 2006	Jan. 2006-Dec. 2008		

The trading systems (cont'd)

- ☐ We investigate 4 trading systems that combine simple MA rules
 - OPT-ALL
 - It is a continuous recursive process, that computes each day the cumulative return of the 1876 rules and selects the best one.
 - OPT-4
 - Selects the rule with the highest cumulative return over the selection period and keeps it over the whole evaluation period
 - VOTE
 - Counts the number of buy, sell and neutral signals of trading that had a higher cumulative returns than the buy-and-hold over the selection period and takes the position with the highest number of "votes".
 - PARTIAL
 - Same as VOTE but with a partial investment according to the number of votes

We compare them to the buy-and-hold (BH), random walk (RW) and BEST, best in sample rule (465,60).

Results

■ Performance of complex trading rules

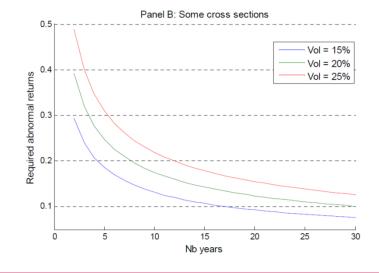
renormance of complex trading rules							
	BH	RW	BEST	OPT-ALL	OPT-4	VOTING	PARTIAL
Nb Buy	3761	1999	2893	2907	2872	2924	2924
% Right Buy	0.531	0.513	0.546	0.542	0.547	0.544	0.544
Nb Sell		1758	868	853	889	837	837
% Right Sell		0.446	0.518	0.505	0.517	0.511	0.511
% Right Strategy	0.531	0.482	0.540	0.534	0.540	0.537	0.537
Strategy	0.062	-0.086	0.143	0.107	0.146	0.120	0.115
t-statistics		-2.10	1.16	0.65	1.20	0.83	0.78
Strategy Compounded	0.044	-0.099	0.133	0.093	0.136	0.107	0.103
Nb Trades	1	3895	7	39	11	7	11.54
Break Even TC		-0.001	0.174	0.017	0.115	0.125	0.069
Volatility Strategy	0.192	0.192	0.192	0.192	0.192	0.192	0.183
Beta	1.00	-0.15	-0.08	-0.04	-0.09	-0.03	-0.03
t-statistics		-9.07	-4.68	-2.75	-5.74	-2.12	-1.92
Alpha		-0.110	0.116	0.079	0.120	0.092	0.087
t-statistics		-2.25	2.35	1.59	2.42	1.85	1.83
Sharpe Ratio	0.168	-0.599	0.594	0.404	0.609	0.472	0.467

Complex rules compounded returns

Results

☐ Out of sample performance of the OPT-4 strategy

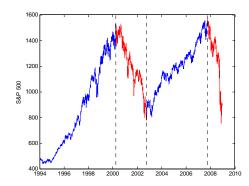
	01.1994-12.1997	12.1997-01.2002	01.2002-01.2006	01.2006-12.2008
Long MA	665	515	415	240
Short MA	65	35	25	50
Selected Rule	0.187	0.129	0.104	0.120
Mean Others	0.156	0.068	0.051	0.074
% High	0.001	0.089	0.027	0.026
% Low	0.557	0.909	0.972	0.973



A new test of market timing

Current tests, more specifically (Student t) tests on means difference may lack power.

$$\frac{\overline{r_{\text{strategy}}} - \overline{r_{\text{benchmark}}}}{\sqrt{2 \cdot \frac{Var}{N}}} = \frac{\overline{r_{\text{strategy}}} - \overline{r_{\text{benchmark}}}}{\sqrt{2 \cdot \frac{0.0001461}{3761}}} = 1.96 \rightarrow \overline{r_{\text{strategy}}} - \overline{r_{\text{benchmark}}} = 0.0005463$$


$$\rightarrow 0.000546 \times 252 = 13.75\%$$

A new test of market timing (cont'd)

- We propose a new test to identify whether the strategy generates signals that correspond to the market phase.
- We first identify peak and throughs of the market evolution with the Pagan-Sossounov (2003) procedure.

■ We then compute the % of right (buy-bull, sell-bear) signals according to these phases. This percentage is block-bootstrapped to find p-values.

Results

Market-timing tests results

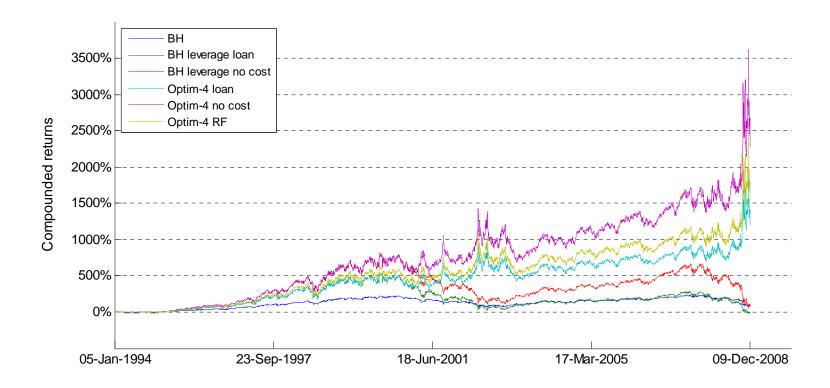
	BEST	OPT-ALL	OPT-4	VOTING	PARTIAL
Nb Buy	2892	2906	2871	2923	2923
Nb Sell	868	853	889	837	837
% Buy-Bull	0.924	0.902	0.930	0.918	0.918
p value 1	0.000	0.000	0.000	0.000	0.000
p value 2	0.111	0.145	0.091	0.123	0.137
% Sell-Bear	0.702	0.619	0.740	0.650	0.650
p value 1	0.000	0.000	0.000	0.000	0.000
p value 2	0.015	0.042	0.007	0.045	0.045
% Right	0.869	0.832	0.883	0.852	0.852
p value 1	0.000	0.000	0.000	0.000	0.000
p value 2	0.000	0.009	0.001	0.002	0.001
% Wrong	0.131	0.168	0.117	0.148	0.148
p value 1	1.000	1.000	1.000	1.000	1.000
p value 2	1.000	0.991	0.999	0.998	0.999

Note: p-value 1 (2) is for a block bootstrap of 40 (470) days

Use of leverage

- ☐ If trading strategy has some predictive power, the use of leverage should provide higher returns.
- Leverage is used in practice (e.g. CTAs) and allows to take advantage of positive returns
- We use:
 - Debt leverage (investment of 200% if buy signal with 100% borrowed, and -200% if sell signal)
 - Options (5%,10%,15% of the capital invested in call/put options according to the signal).

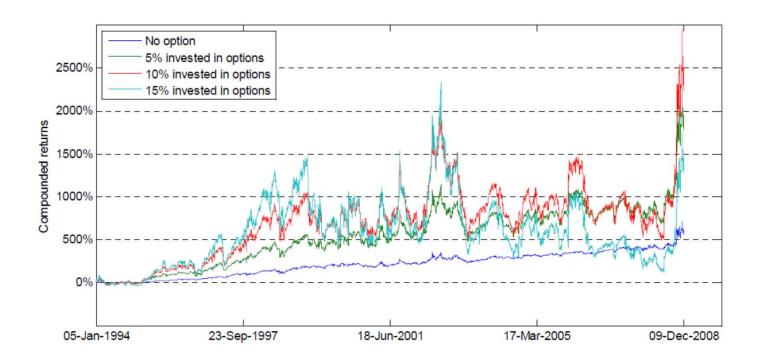
Results


☐ Debt leverage (borrowing rate US bank prime rate)

Panel A: Borrowing rate = US Bank prime loan

	ВН	OPT-ALL	OPT-4	VOTING	PARTIAL
Strategy <i>t-statistics</i>	0.073	0.162 <i>0.63</i>	0.249 1.25	0.197 <i>0</i> .88	0.187 <i>0.83</i>
Strategy Compounded	0.000	0.092	0.191	0.130	0.127
Volatility Strategy	0.384	0.384	0.383	0.384	0.367
Beta t-statistics	2.000 22418	-0.09 -2.75	-0.186 -5.73	-0.069 -2.12	-0.06 -1.92
Alpha t-statistics	-0.020 -75	0.136 1.37	0.226 2.28	0.169 1.71	0.160 1.68
Sharpe Ratio	0.115	0.346	0.573	0.436	0.430

□ OPT-4 strategy compound returns with debt leverage


☐ Leverage with 15% of options

Panel C: 15% of options

	ВН	OPT-ALL	OPT-4	VOTING	PARTIAL
Strategy	0.098	0.298	0.536	0.380	0.379
Strategy Compounded	-0.242	-0.059	0.192	0.007	0.066
Volatility Strategy	0.909	0.890	0.893	0.914	0.832

OPT-4 strategy compound returns with option leverage

Alternative performance measures

$$\beta^{-} = \frac{\operatorname{cov}\left(R, R_{BH} \mid R_{BH} < 0\right)}{\operatorname{var}\left(R_{BH} \mid R_{BH} < 0\right)},\tag{7}$$

$$\beta^{+} = \frac{\operatorname{cov}\left(R, R_{BH} \middle| R_{BH} > 0\right)}{\operatorname{var}\left(R_{BH} \middle| R_{BH} > 0\right)} , \tag{8}$$

$$Sortino = \frac{\overline{R}}{\sqrt{\sum_{t=1}^{N} \left(R_{t} \mid R_{t} < 0\right)^{2} / \sum_{t=1}^{N} \mathbf{1} \left\{R_{t} < 0\right\}}},$$

$$(9)$$

$$cosk = \sum_{t=1}^{N} \left(R_t - \overline{R} \right) \left(R_{BH,t} - \overline{R}_{BH} \right)^2 / N, \qquad (10)$$

$$cosk^{-} = \sum_{t=1}^{N} \left[\left(R_{t} - \overline{R} \right) \left(R_{BH,t} - \overline{R}_{BH} \right)^{2} \left| R_{BH,t} < 0 \right] \right/ \sum_{t=1}^{N} \mathbf{1} \left\{ R_{BH,t} < 0 \right\}, \quad (11)$$

Alternative performance measures: Results

		β	β^{+}	Sortino	Cosk	Cosk
	ВН	1.00	1.00	0.310	-0.007	-0.250
ard	OPT-ALL	-0.05	-0.04	0.543	-0.024	0.179
Standard	OPT-4	-0.12	-0.06	0.608	-0.020	0.188
St	VOTING	-0.05	-0.02	0.745	-0.026	0.176
	PARTIAL	-0.04	-0.02	0.612	-0.023	0.177
ng	BH	2.00	2.00	0.186	-0.013	-0.499
	OPT-ALL	-0.10	-0.08	0.413	-0.048	0.359
3orr cost	OPT-4	-0.25	-0.12	0.500	-0.040	0.378
Debt Borrowing cost	VOTING	-0.09	-0.05	0.638	-0.051	0.352
Ŏ	PARTIAL	-0.09	-0.03	0.500	-0.045	0.355
, o	ВН	3.18	3.92	0.138	0.169	-0.464
15%	OPT-ALL	0.24	1.19	0.437	0.213	0.484
Options 15%	OPT-4	-0.10	1.05	0.557	0.212	0.534
Opti	VOTING	0.20	1.25	0.802	0.223	0.488
•	PARTIAL	0.28	1.22	0.600	0.199	0.476

Summary and conclusions

- □ Complex trading rules based on MA rules have good forecasting ability that leads to high performance on the S&P 500 over the period 1990-2008 (where simple MA rules have been shown to be unprofitable).
- Optimal length of the long MA is always above the standard 200 days.
- Leverage with debt improves the profitability while leverage with options only partially because of the high volatility.
- Results are a challenge to weak-form market efficiency.
- May be due to the fact that most market participants have a short-term horizon are not able (or not willing) to exploit these long-term inefficiencies.

