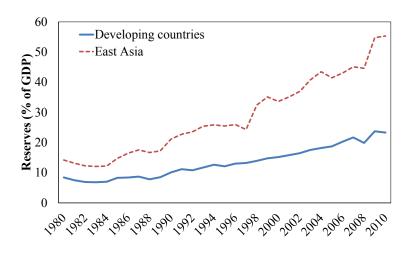
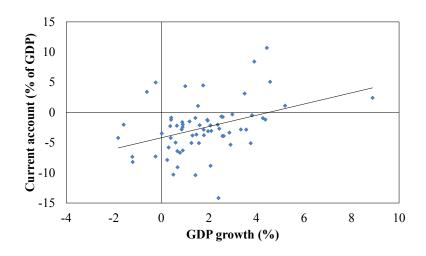
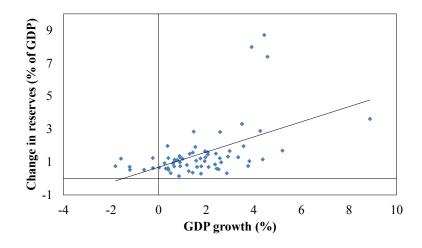
Reserve Accumulation, Growth and Financial Crisis


Gianluca Benigno Luca Fornaro

National Bank of Serbia, June 2012


Motivation

- ► Spectacular accumulation of foreign exchange reserves by developing countries
- ► Fast growing developing countries tend to run current account surpluses


Reserve accumulation in developing countries

GDP growth and current account (1980-2010)

GDP growth and reserve accumulation (1980-2010)

The allocation puzzle

- ▶ These facts are hard to reconcile with the neoclassical growth model
- ▶ In the neoclassical growth model:
 - Faster growth is associated with higher capital inflows
 - The competitive equilibrium is efficient, hence no role for public intervention in capital flows
- ▶ Allocation puzzle, as dubbed by Gourinchas and Jeanne (2011)

Our contribution

- We build an open economy endogenous growth model that explains these facts
- ► Key elements:
 - Learning by importing externality in the tradable sector
 - Occasionally binding international borrowing constraint
- ► The combination of these two elements provides a powerful incentive for the government to accumulate reserves in order to stimulate growth

Our contribution (cont'd)

- ► Foreign technology discoveries spill over to the domestic economy through the imports of intermediate goods
- Knowledge is non-rival and non-excludable: inefficiently low imports of foreign intermediates by producers of tradable goods
- ▶ Reserve management can be used to overcome this inefficiency:
 - 1. Accumulation of reserves is associated with exchange rate undervaluation and higher production of tradables
 - 2. Reserves can be used to mitigate the impact of financial constraints on imports of intermediate goods

Key findings

- Reserve management is a second best policy
- Government intervention induces a positive correlation between reserve accumulation, current account surpluses and growth
- ▶ The welfare gains from an appropriate reserve policy are substantial (in the order of a 1 percent permanent increase in consumption in our baseline calibration)

Related literature on reserve accumulation

- ▶ Insurance motive: Durdu et al. (2010), Jeanne and Ranciere (2011)
- ► **Growth motive**: Dooley et al. (2003), Aizenman and Lee (2007), Rodrik (2009), Korinek and Serven (2010)

Plan of the talk

- Model
- ▶ Explanation of the mechanisms
- ▶ Reserve management in an economy opening to capital flows
- ▶ Welfare

Model

- ► Small open economy
- ▶ Two sectors: tradable and non-tradable
- ► Households, firms, foreign investors, government

Households

Expected lifetime utility

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \right] \tag{1}$$

Consumption aggregator

$$C_t = \left(C_t^{\mathsf{T}}\right)^{\omega} \left(C_t^{\mathsf{N}}\right)^{1-\omega} \tag{2}$$

- Supply inelastically one unit of labor during each period
- Budget constraint

$$C_{t}^{T} + P_{t}^{N} C_{t}^{N} = W_{t} + \Pi_{t}^{T} + \Pi_{t}^{N}$$
 (3)

Households (cont'd)

► Optimality conditions

$$\frac{\omega C_t^{1-\gamma}}{C_t^T} = \lambda_t \tag{4}$$

$$\frac{(1-\omega)C_t^{1-\gamma}}{C_t^N} = \lambda_t P_t^N \tag{5}$$

► Real exchange rate

$$P_t^N = \frac{1 - \omega}{\omega} \frac{C_t^T}{C_t^N} \tag{6}$$

Firms: tradable sector

▶ Produce using labor L_t^T , imported inputs M_t and knowledge X_t

$$Y_t^T = \left(X_t L_t^T\right)^{\alpha_T} M_t^{1-\alpha_T} \tag{7}$$

Dividends

$$\Pi_{t}^{T} = Y_{t}^{T} - W_{t}L_{t}^{T} - P^{M}M_{t} - B_{t+1} + RB_{t} - T_{t}$$
 (8)

► Firms maximize

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \lambda_t \Pi_t^{\mathcal{T}} \right] \tag{9}$$

Working capital

- ightharpoonup Working capital requirement: a fraction ϕ of the imported inputs has to be paid before production takes place
- ightharpoonup Government provides D_t intraperiod loans to finance working capital
- ► The rest has to be financed through intraperiod loans from foreign investors

$$\phi P^M M_t - D_t \tag{10}$$

We assume a zero interest rate on intraperiod loans

Borrowing constraint

- ▶ At the end of the period each firm can default on its debts
- ▶ In case of default foreign investors recover \hat{K}_t
- ▶ To prevent defaults foreign investors impose the borrowing limit

$$\underbrace{-RB_t}_{\text{bonds at the start of period }t} + \underbrace{\Phi P^M M_t - D_t}_{\text{intratemporal loan at time }t} \leq \hat{K}_t \qquad (11)$$

- Binding borrowing constraint interferes with:
 - Consumption smoothing
 - Import of intermediate goods

Borrowing constraint (cont'd)

▶ The borrowing limit depends on two components

$$\hat{K}_t = \kappa_t X_t \tag{12}$$

- $ightharpoonup \kappa_t$ is a stochastic component capturing shocks to the availability of foreign credit
- ightharpoonup The term X_t ensures that the economy has a balanced growth path

Knowledge accumulation

Knowledge evolves according to

$$X_{t+1} = \psi X_t + M_t^{\xi} X_t^{1-\xi} \tag{13}$$

- ► This is meant to capture spillovers of foreign knowledge through the imports of intermediate goods
- \blacktriangleright ξ determines the elasticity of the stock of knowledge with respect to M_t (we calibrate it using the estimates of Coe et al. 1997)
- lacktriangledown ψ determines the average growth rate of the stock of knowledge
- Externality: since knowledge is non-excludable firms do not internalize the impact of their actions on the future stock of knowledge

Firms: non-tradable sector

▶ Produce using labor L_t^N

$$Y_t^N = \left(L_t^N\right)^{\alpha_N} \tag{14}$$

Dividends

$$\Pi_t^N = P_t^N Y_t^N - W_t L_t^N \tag{15}$$

► Optimality condition

$$\alpha_N P_t^N L_t^{N\alpha_N - 1} = W_t \tag{16}$$

Government

- ▶ Collects taxes from firms in the tradable sector T_t , provides working capital loans D_t to firms and trades in foreign exchange reserves FX_t
- ▶ Loss from liquidity provision during crises: $D_t\theta/(1-\theta)$
- Budget constraint

$$FX_{t+1} = R^{FX}FX_t + T_t - D_t \frac{\theta}{1-\theta}$$
 (17)

- Reserves cannot be negative $(FX_{t+1} \ge 0)$ and pay an interest rate not greater than the one on private bonds $(R^{FX} \le R)$
- Intervention during crises cannot exceed the start-of-period stock of reserves

$$\frac{D_t}{1-\theta} \le R^{FX} F X_t \tag{18}$$

Market clearing

► Tradable good

$$C_t^T = Y_t^T - P^M M_t - B_{t+1} + RB_t - FX_{t+1} + R^{FX} FX_t - \frac{\theta}{1 - \theta} D_t$$
 (19)

▶ Non-tradable good

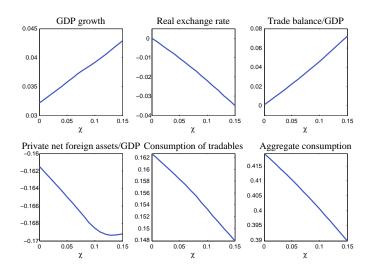
$$C_t^N = Y_t^N \tag{20}$$

Labor

$$L_t^T + L_t^N = 1 (21)$$

Intervention during tranquil times

▶ When firms are not financially constrained M_t is decreasing in the real exchange rate P_t^N

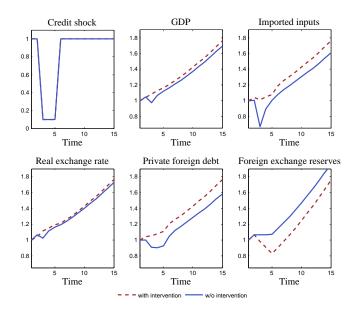

$$M_t = \left(\frac{1 - \alpha_T}{P^M}\right)^{\frac{1}{\alpha_T}} X_t \left[1 - \left(\frac{\alpha_N}{\alpha_T} \frac{P_t^N}{X_t} \left(\frac{P^M}{1 - \alpha_T}\right)^{\frac{1 - \alpha_T}{\alpha_T}}\right)^{\frac{1}{1 - \alpha_N}}\right]$$

 Increasing the stock of reserves leads to a real exchange rate depreciation and to an increase in M_t

$$P_{t}^{N} = \frac{1 - \omega}{\omega} \frac{Y_{t}^{T} - P^{M}M_{t} - B_{t+1} + RB_{t} - FX_{t+1} + R^{FX}FX_{t}}{C_{t}^{N}}$$

▶ Focus on reserve accumulation rules of the form $T_t = \chi Y_t^T$

Intervention during tranquil times $(T_t = \chi Y_t^T)$


Intervention during crises

▶ When firms are financially constrained

$$M_t = \frac{X_t \kappa_L + RB_t + D_t}{\phi P^M}$$

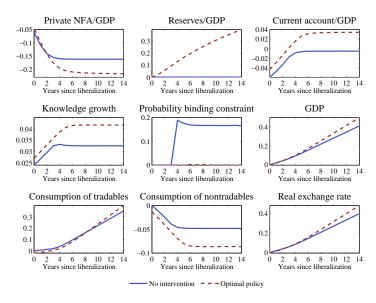
- ► Government can increase the use of imported inputs by using foreign exchange reserves to finance working capital
- ▶ We assume that the government uses at most a fraction χ^{WK} of its stock of reserves to finance working capital

Intervention during crises (cont'd)

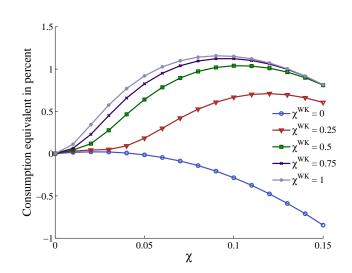
Policy intervention and financial liberalization

► To illustrate the properties of the model we look at the impact of policy on an economy that it is opening to capital flows (i.e.

$$B_0 = FX_0 = 0$$


- ▶ 1. We look at the effect on growth and capital flows by comparing an economy without intervention to one with the optimal policy rule $(\chi = 0.09, \chi^{WK} = 1)$
- ▶ 2. We compute the welfare gains from policy intervention
- ▶ We assume two possible realizations for the credit shock $k_H > k_L$

Calibration


Table 1: Parameters

Parameter	Symbol	Value
Risk aversion	γ	2
Interest rate on private borrowing	R	1.04
Discount factor	β	1/R
Labor share in output in tradable sector	$\alpha_{\mathcal{T}}$	0.65
Labor share in output in non-tradable sector	α_{N}	0.65
Share of tradable goods in consumption	ω	0.341
Price of imported inputs	P^{M}	1
Borrowing limit	κ_{L}	0.1
Probability of bad credit shock	$1 - \rho_H$	0.1
Probability of exiting bad credit shock	$1- ho_{L}$	0.5
Working capital coefficient	ϕ	0.33
Elasticity of TFP w.r.t. imported inputs	ξ	0.15
Constant in knowledge accumulation process	ψ	0.34
Interest rate on reserves	R^{FX}	1
Efficiency of government intervention during crises	θ	0.5

Reserve management, growth and capital flows

Welfare

Conclusions

► We provide a novel framework able to reproduce the positive correlation between reserve accumulation, current account surplus and growth observed in the data

- ► Future research:
 - Interaction between reserve management and capital controls
 - Global imbalances and reserve accumulation