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I. INTRODUCTION

Suppose that: i) a bank's stress or failure creates negative externalities for the economy as a 

whole by increasing the probability of a financial crisis (systemic risk); and ii) increasing the 

proportion of (costly) capital in the bank' s liability structure (that is, it's capital requirement) 

reduces this risk.  It follows that an omniscient regulator would then require banks to finance 

themselves with capital to the point where the (observable to him) marginal cost of capital equals 

the marginal social benefits the capital creates by reducing the probability of a crisis.  In other 

words, an omniscient being would base a bank's capital requirement upon its contribution to 

systemic risk (Crockett 2000).  However, we ordinary mortals differ from omniscient beings (in 

the context of this essay) in that we must use highly imperfect models and data to estimate rather 

than observe a bank' s contribution to systemic risk.  Consequently, we measure a bank's 

contribution to systemic risk imprecisely.  Given this reality, do systemic risk based capital 

requirements make sense for us?

We answer this question in two steps.  First, we show theoretically that a simple leverage 

ratio dominates a policy of basing bank capital requirement upon estimates of their contribution 

to systemic risk (the SysRisk policy) when those estimates are sufficiently imprecise.  Second, 

we examine the empirical performance of the three leading approaches to measuring a bank's 

contribution to systemic risk, viz., Value-at-Risk, Marginal Expected Shortfall (Acharya et. al. 

2010), and CoVaR (Adrian and Brunnermeier 2008).  We show in each case that the proposed 

systemic risk measuring method (a riskometer, in the language of Danielsson 2009) produces 

both a very imprecise measure of an individual bank's absolute contribution to systemic risk and 

a completely unreliable ranking of banks by the level of systemic risk they create.  In short, it is 
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simply not possible to know with any degree of precision just how much systemic risk an 

individual bank creates in either absolute or relative (to other banks) terms.  We therefore 

conclude that, while systemic risk based capital requirements (or other regulatory interventions) 

may make sense for an omniscient being, they probably do not make sense for regulators 

operating with the very limited information actually available to them.

We analyze the relative merits of the leverage ratio and a SysRisk policy by considering the 

case of a regulator who must set capital requirements for a banking system consisting of both 

high risk and low risk banks.  In the absence of any information on individual bank risk, the best 

the regulator can do is to require all banks to operate with a leverage ratio appropriate for high 

risk banks (the HighCap policy) or low risk banks (the LowCap policy).1  If he chooses the 

HighCap policy, he reduces the probability of a financial crisis (no high risk banks operate with 

too little capital), but low risk banks must finance themselves with a higher level of costly capital 

than is efficient.  The LowCap option leads to the opposite trade-off (less costly capital, higher 

crisis probability).  The regulator's choice between the HighCap and the LowCap policies then 

turns on whether it is less costly in total to treat high risk banks as low risk or low risk banks as 

high risk.

Turning now to the SysRisk policy, we assume that the regulator is endowed with an 

imperfect but better than random riskometer that provides a measure of each bank's risk.  By 

using his riskometer and setting a bank's capital requirement on the basis of its reading, a higher 

proportion of banks are assigned the correct level of capital than is the case under the leverage 

ratio.  However, riskometer imprecision sometimes leads to both high risk banks being treated as 
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low risk and low risk banks being treated as high risk, whereas the optimal leverage ratio policy 

leads to only the cheaper error.  Thus, while the SysRisk policy leads to fewer classification 

errors, these errors are on average more costly.  It follows that a regulator will find the SysRisk 

policy optimal only if his riskometer is precise enough to compensate for the more costly errors 

he makes while using it–a riskometer that is merely "better than nothing" will not suffice. 

With this result in mind, we empirically evaluate the performance of the Value-at-Risk (VaR), 

Marginal Expected Shortfall (MES), and CoVaR riskometers.  We base our sample upon the 

large US financial firm sample used in Acharya et. al. (2010), and we examine the pre-crisis 

(2003–2006) and crisis (2007–2010) periods separately.  We assess riskometer performance 

along two dimensions, Reading Imprecision and Rank Imprecision.  A riskometer's Reading 

Imprecision is low if it can pin down the level of a bank's risk to within a narrow range.  A 

riskometer's Rank Imprecision is low if it can reliably order a sample of banks by the level of 

systemic risk they create (as defined by that riskometer).  We assess riskometer precision by 

using a stationary bootstrap (Politis and Romano 1991) to construct 10,000 trial return histories 

for each sample period.  We gauge Reading Imprecision by measuring the extent to which a 

given bank's risk reading varies across trials (i.e., a 99% confidence interval), and we gauge 

Rank Imprecision by seeing if a given riskometer provides a consistent ordering of banks by risk 

across trials.

 We find that all three riskometers offer extremely imprecise readings along both 

performance dimensions.  To begin with Reading Imprecision, the median confidence interval 

produced by the VaR riskometer spans 50 percentiles of the empirical distribution of the VaR 

readings for the sample banks.  The MES and CoVaR riskometers perform even worse.  In the 
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case of MES (CoVar), the median confidence interval for a risk reading spans fully 65 (81) 

percentiles of empirical distribution of the MES (CoVaR) readings for sample banks.  Turning to 

Rank Imprecision, we find for all three riskometers that the Spearman rank order correlation 

coefficient between the orderings of banks by risk in two trials selected at random is not 

statistically significantly different from 0.  In short, the riskometers we have provide a poor 

foundation upon which to construct a policy of systemic risk based capital requirements.

We organize the remainder of this paper as follows.  We review of the literature in Section II.  

We analyze the choice between a leverage ratio and a SysRisk policy as a function of riskometer 

precision in Section III.  We examine the design of the three riskometers we focus upon in 

Section IV, and we analyze the empirical performance of these riskometers in Section V.  

Conclusions follow in Section VI.

II. REVIEW OF THE LITERATURE

Crockett (2000) launched the quest for a systemic riskometer by arguing that a regulator 

should set a bank' s failure probability (via, for example, capital requirements) on the basis of 

that bank' s contribution to systemic risk.  A measure of a bank's contribution to systemic risk 

would ideally be derived from a model of banks: i) in a complex economy; ii) that fully 

optimize; and iii) that pursue intricate state dependent strategies to do so.  Elsinger, Lehar, and 

Summer (2002) pioneered the use of very detailed data on bank exposures to simulate the impact 

of shocks in a real (complex) economy, but to make their simulations tractable they had to 

assume that banks followed simple behavioral rules rather than optimal strategies (let alone 

complex optimal strategies).  Goodhart, Sunirand, and Tsomocos (2004) argue that abrupt and 
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non-linear changes in bank behavior in response to shocks play a crucial role in financial crises, 

and hence that one needs a general equilibrium model with optimizing banks to understand why 

and under what circumstances bank behavior will change in this manner.  But, to make their 

analysis tractable, they had to work with highly stylized banks in a highly stylized economy.  

Danielsson, Shin, and Zigrand (2011) demonstrate theoretically that complex strategic 

interactions between financial market participants (endogenous risk) may play a crucial role in 

turning an exogenous shock into a financial crisis.  However, their analysis is aimed at exploring 

the properties of a stylized financial system rather than at deriving a systemic risk measure for 

actual individual banks.  So, while all of these approaches provide important qualitative insights 

into the nature of systemic risk, the bottom line for our purposes here is that there is now no 

model of complex optimizing banks in a complex economy that is capable of yielding a 

theoretically sound and empirically implementable measure of a bank's contribution to systemic 

risk.

In the absence of such a model, researchers devising practicable riskometers generally take 

the shock process (the initial shock plus any endogenous risk driven amplification/attenuation of 

that shock) as given and work with observable data on bank and financial system performance–

with the idea being that performance data incorporate the impact of shocks that occur.  While 

systemic risk measurement along these lines is a very active area of research (e.g., Segoviano 

and Goodhart 2009; Tarashev, Borio, and Tsatsaronis 2010; Zhou 2010), we focus here upon 

VaR, SES, and CoVaR, which are in our view the three most developed riskometers both 

theoretically and empirically.
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Each riskometer we consider comes in an unconditional and a conditional (forecast) form.  

For example, Adrian and Brunnermeier (2008) develop both a conditional and an unconditional 

form of their CoVaR riskometer, and Brownlees and Engle (2011) develop the conditional 

version of MES.  We choose to examine VaR, MES, and CoVaR in their unconditional forms.  

Our reason for doing so is that regulatory decisions on capital (etc.) necessarily evolve slowly 

given both the inherently time-consuming nature of regulatory decision-making and the time 

dependent adjustment costs to regulatory decisions on the part of regulated banks.  Consequently, 

any decision involving capital (or other such regulatory variable) must be based upon a some sort 

of overall measure of a bank's risk rather than a measure of risk that depends a great deal upon 

the exact path of recent returns.  Unconditional riskometers provide such an overall measure of 

risk, while the readings provided by conditional riskometers vary at far too high a frequency to 

be used as a basis for a regulatory requirement (though they may be useful in other contexts).

Our analysis of riskometer imprecision builds upon ideas developed by Green and Figlewski 

(1999) in their examination of the model risk facing a bank writing options and upon 

Danielsson's (2002; 2008) critiques of VaR.  Danielsson (2002) explores the statistical 

assumptions behind the VaR measure, and Danielsson (2008) shows that the VaR riskometer 

performs poorly even in the relatively straightforward case of a $1000 investment in IBM.  And 

while few would disagree with the observation that riskometers will inevitably be imprecise to at 

least some extent, we show here that the imprecision of one's riskometer matters as it affects the 

optimal policy choice

Hildebrand (2008) argues as we do that the uncertainties in risk measurement create a role for 

the leverage ratio.  Our analysis differs from Hildebrand' s in the following respect: Hildebrand' s 
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primary concern is that flaws in risk models and/or gaming of the capital rules by banks may 

leave banks with too little capital.  Hence, he sees a role for the leverage ratio as a backstop for a 

SysRisk policy that ensures that all banks have some minimum level of capital.  Admati et. al. 

(2011) extend Hildebrand's idea by arguing (on the basis of the Modigliani-Miller theorem) that 

the HighCap policy imposes little to no cost upon the banks while reducing the probability of a 

crisis, and hence that the HighCap policy is optimal.  Our view is that both a SysRisk policy and 

a leverage ratio policy will lead to banks operating with inefficient levels of capital.  The key to 

choosing between the two approaches then turns on the number and cost of the errors that each 

policy produces.  

III. OPTIMAL POLICY WHEN USING AN IMPRECISE RISKOMETER

III.A. Set - Up and Assumptions

We examine the importance of riskometer precision by analyzing the case of a regulator who 

must set capital requirements for a banking system consisting of high risk and low risk (large) 

banks.2  The trade-off the regulator faces is that while requiring banks to operate with a higher 

level of capital reduces the probability of a crisis, requiring banks to finance a higher proportion 

of their activities with capital is socially costly.  The regulator must then choose a policy to set 

bank capital levels so as to minimize the total of the cost of the capital he requires banks to hold 

and the expected cost of a financial crisis.

We model this problem as a one period game in which the regulator first sets each bank's 

capital requirement and then a crisis occurs with a probability that is a function of the capital 

8

2 We assume that small banks do not create any systemic risk externalities and so do not include them in 
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requirements he sets.  We impose the constraint (consistent with actual behavior) that the 

regulator cannot act in a capricious and arbitrary fashion.  We operationalize this constraint by 

assuming that the regulator must treat every bank that looks identical to him in an identical 

manner and must require all banks that look identical to him to hold the same level of capital.  

We assume that the banking system consists of QH (QL) high risk (low risk) banks and to 

simplify the exposition we further assume that the number of banks is large enough to be treated 

as a continuum.  All banks find it privately optimal to operate with a level of capital equal to KL, 

and with this level of capital a low risk bank will never cause a crisis.  However, if a high risk 

bank operates with a level of capital of less than KH, KH > KL, it sets in train a series of events 

that ultimately causes a crisis with probability ϕ.  Denote the number of high risk banks that 

operate with KL as QHL.  We assume that the cost of requiring a bank to operate with KL is 0, that 

the cost of requiring a bank to increase its capital to KH is a constant that does not depend upon 

the bank's type, and that the cost of requiring all banks to operate with KH is κ.3

The social cost of a financial crisis is Ω, and the probability of a crisis is χ[QHL],4 with

(1) χ QHL[ ] = 1− 1−φ( )QHL .
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4 We use the notation conventions of the computer program Mathematica, in which most of the work in the paper 
was done.  So, χ[QHL] means that χ is a function of QHL.  



It follows that ∂χ/∂QHL > 0 and that ∂2χ/∂QHL2 < 0.  We assume that the social cost of a financial 

crisis is large and hence that a regulator would find it worthwhile to require all high risk banks to 

operate with capital equal to KH if he could identify them.  That is, we assume that 

(2) Ωχ QH[ ] >κ QH

QH +QL

 .

The regulator knows all of the parameters of the model, but he does not know which banks 

are high risk and which banks are low risk.  The only way that he can get information on a bank's 

risk is to use his endowed riskometer.  The riskometer will give one reading of either "High 

Risk" or "Low Risk" per bank, and that reading will be correct (incorrect) with probability π (1–

π), with 0.5 < π ≤ 1.5  That is, we assume that the riskometer is always better than random.

III.B. Optimal Policy

Since the requirement that the regulator treat all banks that look identical to him in an 

identical manner rules out any policy that involves a mixed strategy, the regulator has the 

following policy options available to him.  He can eschew his riskometer (in which case all 

banks do look the same to him) and simply require that all banks operate with a uniform level of 

capital.  The level can be set at either KL (the LowCap policy) or at KH (the HighCap policy).  

Alternatively, the regulator can choose to use his riskometer (the SysRisk policy), in which case 

he must use it for all banks and he must require a bank with a "High Risk" ("Low Risk") reading 

to operate with KH (KL).  Consider the costs of each policy in turn.
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If the regulator chooses the LowCap policy, then all banks hold KL at zero cost.  It then 

follows that the number of high risk banks that hold KL is just equal to the number of high risk 

banks, implying that the probability of a crisis is χ[QH].  The total cost of this policy is then 

CLowCap, with

(3) CLowCap =Ωχ QH[ ] .

If the regulator chooses the HighCap policy, then all banks hold KH at a total cost of κ.  The 

number of high risk banks that hold KL is then zero, implying that the probability of a crisis is 

zero as well.  The total cost of this policy is then CHighCap, with

(4) CHighCap =κ .

Note that neither CHighCap nor CLowCap vary with π. 

If the regulator chooses the SysRisk policy, then he treats each bank as if it is of the type 

indicated by his riskometer's reading.  Consequently, the number of high risk banks operating 

with KL is equal to the number of high risk banks that the riskometer mistakenly classifies as low 

risk, which is QH (1 - π).  The total number of banks that must operate with KH is equal to the 

number of high risk banks that the riskometer classifies correctly (QH π) plus the number of low 

risk banks the riskometer classifies incorrectly (QL (1 - π)).  The total cost of the SysRisk policy 

is then CSysRisk, with 

(5) CSysRisk =Ωχ 1−π( )QH⎡⎣ ⎤⎦ +κ
QHπ +QL 1−π( )

QH +QL

 .

When π = 0.5, we have
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(6) CSysRisk π=0.5
=Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥
+κ
2

, 

and when π = 1, we have

(7) CSysRisk π=1
=κ QH

QH +QL

.

We sketch the total social costs of the regulator's policy options in Figure 1.  Let us now consider 

the properties of and relationships between these cost functions.

LEMMA 1.  CSysRisk π=0.5
> CSysRisk π=1

 .

Proof.  From equations 6 and 7 we know that CSysRisk π=0.5
> CSysRisk π=1

holds if

(8) Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥
> κ

2
QH −QL

QH +QL

.

Our assumption that the cost of a crisis is large (equation 2) and the relationship between the 

probability of a crisis and QH imply that

(9) ! "
QH

2
#
$%

&
'(
>

)
2

QH

QH +QL

.

It follows from equation 9 that the inequality in equation 8 holds.

!

LEMMA 2.  Min CLowCap,CHighCap{ }!" #$> CSysRisk %=1
.

Proof.  We assume that the regulator will find it optimal to require high risk banks to operate 

with KH if he can identify the high risk and low risk banks perfectly (equation 2), so it follows 
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that CLowCap > CSysRisk ! =1
.  We know that under both the HighCap policy and the SysRisk policy 

implemented with a perfect riskometer that all high risk banks operate with KH, thereby 

eliminating the chance of a crisis.  But, in order to achieve this benefit the HighCap policy 

requires both high risk and low risk banks to operate with KH, while the SysRisk policy requires 

that only the high risk banks do so.  Hence, CHighCap > CSysRisk ! =1
.

!

LEMMA 3. CSysRisk π=0.5
>Min CLowCap,CHighCap{ }⎡⎣ ⎤⎦ .

Proof.  Suppose that the regulator prefers the HighCap policy to the LowCap.  In this case, 

CLowCap ≥ CHighCap, and it then follows from equations 3 and 4 that Ω χ[QH] ≥ κ and hence (with 

equation 1) that Ω χ[QH/2] > κ/2.  Now compare the HighCap policy to SysRisk policy.  It 

follows from equations 4 and 6 that CSysRisk π=0.5
>CHighCap  if

(10) Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥
> κ
2

,

which is true if CLowCap ≥ CHighCap.

Now suppose that the regulator prefers the LowCap policy to the HighCap.  In this case, 

CHighCap > CLowCap, and it then follows from equations 3 and 4 that

(11) κ
2
>Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥

,

Comparing the LowCap and the SysRisk policies, we find in this case that CSysRisk π=0.5
>CHighCap  

if 
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(12) !
2

> " # QH[ ] $ " #
QH

2
%
&'

(
)*

,

If follows from equation 1 that Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥
>Ωχ QH[ ]−Ωχ QH

2
⎡
⎣⎢

⎤
⎦⎥

 and then from equation 12 that 

CSysRisk π=0.5
>CHighCap .

!

LEMMA 4. Consider a riskometer that returns the correct risk-reading with probability π**.   If  

 CSysRisk π=π**
<CSysRisk π=0.5

, then CSysRisk π<π**
>CSysRisk π=π**

and 

 CSysRisk π>π**
<CSysRisk π=π**

. 

Proof.  Taking the derivative of CSysRisk with respect to π, we find that 
 

∂CSysRisk π=0.5

∂π
 0  and 

that 
∂2CSysRisk

∂π 2 < 0 .  Suppose that 
∂CSysRisk π=0.5

∂π
≤ 0 .  In this case our result follows immediately.  

Now suppose that 
∂CSysRisk π=0.5

∂π
> 0  .  In this case it follows from Lemma 1 that: i) CSysRisk hits its 

maximum at πM; ii) 
! CSysRisk " >" M

! "
< 0 ; iii) there exists a π* such that CSysRisk ! =! *

> CSysRisk ! =0.5
; iv) 

CSysRisk ! <! *
" CSysRisk ! =0.5

; and v) πM < π* < 1.  Now consider CSysRisk ! **>! *
.  If π > π*, we know 
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from (ii) and (v) that CSysRisk π>π**
<CSysRisk π=π**

.  If π* ≤ π ≤ π**, we know from (ii) and (v) that 

CSysRisk ! *" ! <! **
>CSysRisk ! =! **

 .  And, if π < π*, we know from (iv) that CSysRisk ! <! *
< CSysRisk ! =! **

.

!

Having established the key properties of the regulatory policy cost functions, we can now 

derive our main result.

PROPOSITION 1.  The regulator prefers the leverage ratio to the SysRisk policy if his riskometer 

 is sufficiently imprecise.

Proof.   We know from Lemmas 2 and 3 that

(13) CSysRisk ! =0.5
> Min CLowCap,CHighCap{ }"# $%> CSysRisk ! =1

.

It follows that there exists a π** such that CSysRisk ! =! **
= Min CLowCap,CHighCap{ }"# $% .  Lemma 4 then 

implies that the regulator prefers either the HighCap or the LowCap policy if π < π** and the 

SysRisk policy if π > π**.

!

Our analysis demonstrates that the regulator's optimal policy choice depends upon the quality  

of his riskometer.  If the regulator finds himself in possession of a perfect riskometer, then a 

policy of setting capital requirements on the basis of that riskometer's readings is indeed optimal.  

However, as the regulator's riskometer becomes less precise, there comes a point where (poorly 
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measured) systemic risk based capital requirements become dominated by other policies.  So, 

what riskometers do we have and just how precise are they?

IV. RISKOMETER DESIGN: VAR, MES, And COVAR

A riskometer Ψγ is an algorithm that implements an approach γ for measuring a bank's 

contribution to systemic risk.  Provided with the data concerning a given bank B that the 

riskometer requires, it provides a quantitative reading of B's contribution to systemic risk, 

denoted by Ψγ,B. 

IV.A  The VaR Riskometer

If one assumes that the marginal increase in the probability of a financial crisis due to a bank 

entering into a stressed state is independent of the state of the financial system, then a sensible 

measure of the systemic risk that a given bank creates is just the probability that the bank enters 

into a stressed state.  The probability that a bank enters into a stressed state increases with the 

magnitude of a negative shock to its value (all else equal).  Hence, banks that experience larger 

negative shocks create more systemic risk.  If a bank does experience larger negative shocks, 

then one might expect its return distribution to have a longer left tail.  A conceptually simple (if 

gameable) measure of the length of the tail is the position of a given extreme quantile of the 

return distribution.  This line of thought leads to the VaR riskometer, where a bank's systemic 

risk measure is set equal to the value of a given extreme quantile of its return distribution.

To empirically implement the VaR riskometer, one must choose a return quantile and a 

method of estimating the location of that quantile.  To begin with the quantile decision, the 

choice of exactly which quantile to use is of course arbitrary.  The trade-off when selecting the 
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quantile is that while a quantile further out in the tail provides a better estimate of the return 

consequences of a plausible worst case event, the further one goes out into the tail of the 

distribution, the fewer observations one has with which to estimate the location of the quantile 

for which one is aiming.  The standard solution to this trade-off is to set the VaR quantile at 

either the 1th percentile or the 5th percentile of the return distribution.  We use the 1th percentile 

here.6

There exist a wide variety of methods that one can use to estimate the location of the VaR 

quantile one selects.  To avoid needless complexity, we simply take as our estimate of the 1th 

percentile of the return distribution the 1th percentile value of the return series we examine (that 

is, we use the Historical Simulation method of estimating VaR).

We denote this quantile plus method specification of VaR as ΨVaR.  So, ΨVaR for a bank B with 

a return series {RB,1, RB,2 ... RB,T} is ΨVaR,B, with 

(14) ! VaR,B = Quantile RB,1 ,RB,1 ...RB,T{ } ,0.01"# $%.

We implement this measure using daily market returns for sample banks.

IV.B.  The MES Riskometer

The MES riskometer takes its inspiration from the idea that, as Andrew Crocket (2000) put it, 

"the financial system is a system".  That is, since the real economy requires the services that the 

financial system provides in order to function properly, a bank creates a risk to the overall 

economy (i.e., systemic risk) to the extent that it contributes to stress in the financial system as a 

whole.  Building upon this idea, Acharya et. al. (2010) construct a theory yielding the result that 

17

6 We obtain the same results when using the 5th percentile.



a bank creates systemic risk if it performs poorly at the same time as the economy as a whole 

performs poorly.  This conclusion in turn leads to the MES riskometer, which is defined as a 

bank's expected return conditional upon the market performing poorly.7  Acharya et. al. (2010) 

operationalize MES as follows: a bank B's MES is equal to its average return on days when the 

market return RMarket is at or below its 5th percentile value for the sample period ( VaRMarket
5% ), 

determining the 5th percentile value of the market return series using the Historical Simulation 

method as above.  Denoting this specification of MES as ΨMES, a bank B's ΨMES is then

(15) 
 
ΨMES,B =Mean RB, z1

,RB, z2
...RB, zW{ }⎡

⎣
⎤
⎦  , 

where {z1, z2... zW} is the set of days such that RMarket,z <   VaRMarket
5% .  Following Acharya et. al. 

(2010), we compute this measure using daily returns and we use the return on the value-weighted 

CRSP index as our measure of RMarket.8

IV.C.  The CoVaR Riskometer

CoVaR shares with MES the idea that a bank creates systemic stress when stress at the bank 

coincides with stress in the financial system as a whole, and it shares with VaR the idea that the 

location of the 1th percentile of a return distribution provides a good measure of risk.  Combining 

these two ideas, Adrian and Brunnermeier (2008) posit that a bank B creates systemic risk if risk 
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7 MES is the key building block of Acharya et. al.'s (2010) full systemic risk measure SES, which also includes a 
leverage measure.  Given that SES builds upon MES, any imprecision in MES will necessarily affect SES.  Thus, we 
concentrate our analysis here upon the MES part of SES.

8 One aspect of MES that is worth noting is that, as Acharya et. al. (2010) acknowledge, the 5th percentile threshold 
is not really extreme enough to properly serve as a defining bound for "market stress".  However, Acharya et. al. 
(2010) argue that this bound is far enough out into the tail of the market return distribution to lead to MES readings 
that are proportional to what MES readings would be if there was enough data to estimate them with a more 
realistically extreme bound to define episodes of market stress.



in the financial system as a whole increases as stress at the bank increases.  Their measure of risk 

in the financial system is 
 
VaRFinSys

1% , which is the 1% VaR of the portfolio of financial firms.

Assume that B is under stress when RB = ΨVaR,B and not under stress when RB = Median[RB], 

where RB is the return series for B.  We then get the CoVaR riskometer's measure of systemic risk 

at bank B ΨCoVaR,B, with

(16) 
 
ΨCoVaR,B =VaRFinSys

1%
RB=ΨVaR ,B

−VaRFinSys
1%

RB=Median[RB ]
 .

Following Adrian and Brunnermeier (2008), we estimate 
 
VaRFinSys

1%
RB

with

(17) 
 
VaRFinSys

1%
RB
=α + βRB + ε  .

using a quantile regression.9  We then calculate ΨCoVaR,B with the estimated parameters from 

equation 17.

There are obviously many ways of implementing this general CoVaR idea, and Adrian and 

Brunnermeier (2008) discuss several specifications in their paper.  In particular, one must decide 

whether to measure returns by common stock returns or by changes in the market value of bank 

assets.  Given that Adrian and Brunnermeier (2008) report that both methods lead to similar 

results in practice, we choose to measure returns with (easily observable) stock returns rather 

than by (difficult to infer) changes in the market value of bank assets so as to avoid a very 
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9 We thank Johannes Ludsteck for sharing and updating the code he developed to estimate quantile regressions in 
Mathematica.



significant errors in variable problem.10  While Adrian and Brunnermeier estimate ΨCoVaR with 

weekly returns, we use daily returns in our analysis below to be consistent with our analysis of 

ΨVaR and ΨMES.11  We set RFinSys equal to the return on the Fama-French Finance Industry 

portfolio.

V. RISKOMETER PERFORMANCE

V.A.  Gauging Performance: Criteria and Method

Since the idea of the SysRisk policy is to make a bank's capital requirement a function of the 

amount of systemic risk that the bank creates, a regulator pursuing a SysRisk policy needs a 

riskometer that enables him to measure the amount of systemic risk that each individual bank 

creates.  Ideally, a riskometer would produce a precise quantitative reading of each bank's risk, 

but at the very least the riskometer must be capable of ordering banks by the amount of risk they 

create.  We therefore evaluate riskometer performance along two dimensions: Reading 

Imprecision and Rank Imprecision.  A riskometer performs well on the Reading Imprecision 

dimension if the 99% confidence intervals for bank risk readings are "small".  A riskometer 

performs well on the Rank Imprecision dimension if it provides a precise ordering of banks by 

the amount of systemic risk they create.
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10 The errors in variable problem can arise through several channels.  Among these channels are the following.  
First, banks report asset values on a quarterly basis.  One is therefore left with either very few return observations or 
one must use some ad hoc interpolation rule to trace the path of asset values over the quarter.  Second, a 
considerable proportion of assets are reported at book rather than market value, so one must use some ad hoc 
method to transform book values to market values.  Third, reported asset values are highly vulnerable to accounting 
manipulation.  Fourth, publicly reported asset values do not include (at times substantial) off-balance sheet items 
and so may present a very incomplete picture of true assets.

11 We repeated the analysis below using weekly returns and found that doing so did not alter our results.



Considering the Reading Imprecision dimension in more detail, our performance criteria 

requires that we have some way to judge whether the risk reading 99% confidence intervals 

produced by a given riskometer are "large" or "small".  We propose to do so as follows.  We take 

the meaning of "small" to be "small relative to the relevant yardstick", and we take as the 

relevant yardstick the distribution of the point estimate risk readings the riskometer in question 

produces for sample banks.  That is, a riskometer's Reading Imprecision is low if it can pin down 

a bank's risk reading to within a narrow range of the distribution of point estimate risk readings. 

To avoid the possibility of having this measure driven by extreme outliers and to make the 

measure more intuitively understandable, we report the range of a bank's risk reading confidence 

interval in terms of percentiles of the point estimate distribution.  To illustrate, suppose that the 

point estimate risk readings that a given riskometer produces for a sample of banks are 

distributed according to a Uniform distribution with endpoints {–5, –10} and that the 99% 

confidence interval for bank B's risk reading is {–6, –9}.  In this case, B's Reading Imprecision 

Bounds are {20, 80} and its Reading Imprecision Score is 60 (i.e., 80 - 20) as its confidence 

interval stretches from the 20th percentile to the 80th percentile of the distribution of the point 

estimate risk readings.  The maximum value of a Reading Imprecision Score is 100 (meaning 

that the bank's risk reading could be anywhere in the point estimate distribution) and the 

minimum value is 0 (meaning that the reading is perfectly precise).

As there is no simple analytical formula available to compute confidence intervals for 

readings produced by the riskometers we examine, we calculate confidence intervals using a 

bootstrap.  For each sample period, we generate 10,000 return histories ("trials").  These trials 

produce 10,000 readings for each bank/riskometer combination.  To get the 99% confidence 
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interval for a given bank's risk reading for a given riskometer, we sort that bank's riskometer 

readings by value and set the confidence interval equal to the bounds of the middle 99% of that 

distribution.  To measure Rank Imprecision for a given riskometer, we calculate the Spearman 

rank order correlation coefficient ρ for 10,000 pairs of trials selected at random, where the order 

of each bank in each trial is determined by its reading for that riskometer.  We then get the 

distribution of  ρ for that riskometer, and we see if it is statistically significantly different from 0.

Since our return data incorporates both cross-sectional and time series relationships, our trials 

must capture these aspects of the data.  We therefore generate the trials as follows.  To capture 

the cross-sectional relationships between RMarket, RFinSys, and individual bank returns, we 

construct our trials by drawing sample days.  So, if bank B's return has a cross-sectional 

relationship with RMarket, that relationship will appear in the trials as we will have RMarket and RB 

observations for the same days.  To capture the time series relationships in the data, we select the 

days we include in a trial using a stationary bootstrap (Politis and Romano 1991).  In this 

technique one initially draws an observation day at random from the sample and then includes a 

random number of following days.  The number of additional days that one includes is given by 

a draw from a geometric distribution with parameter g, with g =  T-1/3, where T is the number of 

days in the sample period.  One then repeats this process until the number of days in the trial 

equals T.

V.B.  Data

Systemic risk concerns arise in connection with large financial firms.  We therefore construct 

our sample by beginning with the large financial firm sample used in Acharya et. al. (2010).  

This sample consists of the 101 financial firms with a market cap in excess of $5 billion as of 
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June 2007.  We examine a pre-crisis sample period consisting of the years 2003–2006, and a 

crisis sample period consisting of the years 2007–2010.  We include a bank in a sample period if 

we have a return observation for that bank for at least 75% of sample days.  Our 2003–2006 

sample consists of 92 firms, and our 2007–2010 sample consists of 77 firms.  We obtain our firm 

returns from CRSP.

V.C.  Reading Imprecision: VaR

Carrying out the analysis discussed above, we plot ΨVaR 99% confidence intervals and 

Reading Imprecision Bounds for each sample period in Figure II and we report summary 

statistics on the Reading Imprecision Scores in Table I.  As one would expect, the absolute 

magnitude of ΨVaR confidence intervals soared in the crisis period.  But, since the ΨVaR point 

estimate distribution stretched by a comparable amount, the Reading Imprecision Bounds 

remained roughly constant.  That is, ΨVaR is as good–or as bad–a riskometer in the crisis period 

as it is in the pre-crisis period.

That said, the Reading Imprecision Bounds and Scores indicate that ΨVaR does not perform all 

that well.  The median Reading Imprecision Score is 51 (52) in the 2003–2006 (2007–2010) 

sample, indicating that the 99% confidence interval of the typical bank's ΨVaR reading spans fully 

half of the ΨVaR distribution.  Equipped with the ΨVaR riskometer, then, a regulator would find it 

difficult to correctly assign the typical bank to even the correct quartile of the risk distribution.

V.D.  Reading Imprecision: MES

Turning now to the more theoretically sound but more complex MES riskometer, we plot 

ΨMES 99% confidence intervals and Reading Imprecision Bounds in Figure III, and we report 
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summary statistics on Reading Imprecision Scores in Table I.  In the case of ΨMES, too, the risk 

reading confidence intervals increase dramatically in the crisis period, but the Reading 

Imprecision Bounds and Scores remain roughly constant.  Again, though, our Reading 

Imprecision results indicate that ΨMES performs poorly as a riskometer.  In this case the median 

Reading Imprecision Score is 65 (68) for the 2003–2006 (2007–2010) sample, indicating that the 

99% confidence interval for the MES riskometer's reading for the typical bank spans 

approximately two thirds of the ΨMES point estimate distribution.  A regulator equipped with the 

MES riskometer would often find it impossible to reliably tell if a given bank belonged in either 

the upper or the lower quartile of the risk distribution.

V.E.  Reading Imprecision: CoVaR

CoVaR shares with MES an elegant theoretical foundation, but ΨCoVaR is even more complex 

to estimate.  The CoVaR riskometer's reading for a given bank is produced by a combination of 

two items that are each very difficult to measure on their own, viz., the ΨVaR of the bank and 

 VaRFinSys
1% as a function of the bank's return.  Given that our results above demonstrate that it is 

impossible to measure even ΨVaR alone with precision, it will come as no surprise to see that 

ΨCoVaR is the least precise of the riskometers we examine.

We plot ΨCoVaR 99% confidence intervals and Reading Imprecision Bounds in Figure IV, and 

report ΨCoVaR Reading Imprecision Scores in Table I.  The plots indicate and the Imprecision 

Scores confirm that the CoVaR riskometer is so imprecise that a reading conveys very little 

information about the location of a bank in the risk distribution.  The median Reading 

Imprecision Score in the 2003–2006 (2007–2010) is 82 (95).  Thus, a regulator equipped with 
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the CoVaR riskometer could not reliably tell if the typical bank belonged in either the upper or 

the lower decile of the risk distribution.

V.F.  Rank Precision

Our Reading Imprecision analysis demonstrates that individual bank riskometer readings 

vary tremendously across trials.  But, it could be the case that individual bank riskometer 

readings covary from trial to trial as well.  That is, some trials may produce high riskometer 

readings for all banks, and some trials may produce low riskometer readings for all banks.  So, 

our results on Reading Imprecision above do not rule out the possibility that a regulator can rank 

banks by the amount of risk they create.  If this is the case, then a regulator would at least find it 

possible to require high risk banks to hold more capital than low risk banks.

We examine this possibility by computing the Spearman rank order correlation coefficient ρ 

between trials selected at random.  If banks tend to appear in the same order when ranked on the 

basis of riskometer readings from trial to trial (even if the value of those readings varies a great 

deal), then ρ will be positive.  We obtain the distribution of  ρ by computing it for 10,000 pairs of 

trials, with each trail in the pair selected at random.  We sort the set of  ρ's we obtain by value 

and take the 99% confidence interval to be equal to the bounds on the middle 99% of that 

distribution.

We report the results of this analysis in Table II.  We find for each riskometer and each 

sample period that the ranking of banks by riskometer reading are essentially uncorrelated from 

trial to trial, and hence that ρ is not statistically significantly different from 0.  It follows that a 
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regulator can not use the riskometers we examine here to order banks by the level of systemic 

risk they create.

VI. CONCLUSION

Basing a bank's capital requirement (or other regulatory intervention) upon the level of 

systemic risk that the bank creates is undoubtedly far superior to basing capital requirements 

upon a cruder policy such as a simple leverage ratio...at least in theory.  Yet, the SysRisk policy 

will only be superior in practice if the regulator possesses a riskometer that enables him to 

precisely measure the amount of systemic risk that individual banks create.  We examine the 

three leading riskometers, viz., VaR, MES, and CoVaR, and find that they are incapable meeting 

the demands that a SysRisk policy places upon them.  We therefore conclude that, in practice, 

less informationally intensive policies such as the leverage ratio may offer a more sensible 

approach to dealing with systemic risk than a more theoretically attractive SysRisk policy.

We note that our critique of the riskometers we examine is not that they are theoretically 

unsound or that they are mis-specified.  If this were the case, then a different riskometer or a 

different specification for an existing riskometer might solve the problem.  But this is not the 

case: MES and CoVaR in particular have strong theoretical foundations, and these foundations 

lead to plausible empirical risk measures.  Instead, we show that the three analytically distinct 

riskometers that we do examine are all empirically unreliable.  Since any riskometer will have to 

confront similar estimation issues, we think it likely that our conclusion that it would be difficult 

to build a SysRisk policy upon the riskometers we examine here extends to riskometers more 

generally.
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We draw two implications from our analysis.  First, on a methodological note, our analysis 

highlights the importance of taking measurement uncertainty seriously.  A policy option that may 

make sense for an omniscient being that can observe all of the relevant parameters directly may 

not make sense for regulators who must operate with imperfect estimates of those parameters.  

Second, while we do think that the leverage ratio may dominate the SysRisk policy in practice, 

this is not because the leverage ratio is itself ideal–it is just that we don't know enough to get the 

SysRisk policy to work well.  It follows that capital will inevitably be an inefficient tool with 

which to address systemic risk.  And while the inefficiency of capital by no means implies that a 

better tool exists, it does suggest that it would be worth looking hard to find one (or more).

Our analysis of systemic risk based capital requirements brings to mind the story of Phaeton, 

the long lost son of the god Apollo.  One day Phaeton appeared on Mount Olympus and Apollo 

was so delighted to see him that he offered to grant him anything that he desired.  Phaeton asked 

to drive the chariot that pulled the Sun across the heavens.  Apollo argued that this was a terrible 

idea as the chariot was built for him–a god–and not for a mortal.  But Phaeton stood firm and 

Apollo had given his word, so the next morning Phaeton set off.  Of course, he was completely 

incapable of controlling Apollo's chariot and was thus in the process of destroying the world 

when Zeus stuck him down with a thunderbolt.  The moral of the story is that one should be wary  

of using divine tools if one lacks divine powers.  This is wisdom that we forget at our peril.
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TABLE I

Reading Imprecision Scores

Sample Riskometer Mean Median Standard
Deviation

Minimum Maximum

VaR 49 51 17 7 90

2003ê2006 MES 57 65 21 3 93

CoVaR 81 82 16 23 100

VaR 49 52 19 4 78

2007ê2010 MES 62 68 19 8 97

CoVaR 93 95 7 43 100

Notes: In this table we report summary statistics on the Reading Imprecision Scores for the 

three riskometers we examine for each sample period.  A bank's Reading Imprecision Score for a 

given riskometer is equal to the range of the 99% confidence interval of that riskometer's reading 

for that bank, with the confidence interval bounds expressed in terms of percentiles of the 

empirical distribution of the point estimate riskometer readings for sample banks.  To illustrate, if 

the point estimate riskometer readings for the sample were uniformly distributed on {–5, –10} 

and the bounds of the 99% confidence interval for a given bank's risk reading were {–6, –9}, 

then that bank's Reading Imprecision Score would be 60 (80 – 20) as its confidence interval 

spans the 20th to the 80th percentiles of the distribution of sample bank riskometer readings.  

Our base sample consists of the 101 financial firms with a market cap in excess of $5 billion as 

of June 2007.  We include a firm in a sample period if we have a return observation for that firm 

for at least 75% of sample days.  Our 2003/2006 sample consists of 92 firms, and our 2007/2010 

sample consists of 77 firms.   
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TABLE II

Rank Imprecision

Sample Riskometer Median 99% Confidence Interval

VaR 0.05 8-0.22, 0.32<
2003ê2006 MES 0.01 8-0.26, 0.28<

CoVaR 0.03 8-0.24, 0.29<
VaR 0.12 8-0.19, 0.41<

2007ê2010 MES 0.09 8-0.21, 0.39<
CoVaR 0.08 8-0.2, 0.36<

Notes: In this table we report summary statistics for the Spearman rank order correlation 

coefficient for each riskometer for each sample period.  We compute these statistics by: i) using a 

stationary bootstrap to contruct 10,000 trial return histories for each sample; ii) ordering the 

sample firms by riskometer readings for each trial; and iii) calculating the Spearman coefficient 

for 10,000 pairs of trials selected at random.  Our base sample consists of the 101 financial firms 

with a market cap in excess of $5 billion as of June 2007.  We include a firm in a sample period 

if we have a return observation for that firm for at least 75% of sample days.  Our 2003/2006 

sample consists of 92 firms, and our 2007/2010 sample consists of 77 firms.
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FIGURE 1

Riskometer Precision and the Optimal Policy Choice

In this figure we sketch the cost of the SysRisk policy (the CSysRisk curve) and the cost of the best 

of the two leverage ratio policies HighCap and LowCap (indicated by the 

Min CHighCap,CLowCap{ }!" #$line) as a function of the precision of the regulator’s riskometer (π).  πM 

indicates the value of π where CSysRisk is at its maximum, π* indicates the value of π such that 

CSysRisk ! =! *
= CSysRisk ! =0.5

, and π** indicates the value of π such that 

CSysRisk ! =! **
= Min CHighCap,CLowCap{ }"# $% .
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2003–2006

20 40 60 80
Bank

-14
-12
-10
-8
-6
-4
-2
0
VaR

0 20 40 60 80
Bank0

20
40
60
80
100
Percentile

2007–2010

10 20 30 40 50 60 70
Bank

-50
-40
-30
-20
-10
0
VaR

0 10 20 30 40 50 60 70
Bank0

20
40
60
80
100
Percentile

FIGURE II

VaR Reading Imprecision

In this figure we plot the point estimate and the 99% confidence interval of each sample 

bank's VaR estimate on the left and the implied Reading Imprecision bounds on the right for each 

sample period, with a bank's VaR equal to the 1th percentile of its one day return distribution.  

The Reading Imprecision plot expresses the VaR point estimates and confidence intervals in 

terms of the percentile location of their values in the empirical distribution of the VaR point 

estimates.           
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FIGURE III

MES Reading Imprecision

In this figure we plot the point estimate and the 99% confidence interval of each sample 

bank's MES estimate on the left and the implied Reading Imprecision bounds on the right for 

each sample period, with a bank's MES is equal to its average return on days when the return on 

the market portfolio is below its 5th percentile value for the sample period.  The Reading 

Imprecision plot expresses the MES point estimates and confidence intervals in terms of the 

percentile location of their values in the empirical distribution of the MES point estimates. 
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FIGURE IV

CoVaR Reading Imprecision

In this figure we plot the point estimate and the 99% confidence interval of each sample 

bank's CoVaR estimate on the left and the implied Reading Imprecision bounds on the right for 

each sample period.  A bank's CoVaR is equal to the difference between the VaR of the portfolio 

of financial sector firms given that the return on the bank equals its median value and the VaR of 

the portfolio of financial sector firms given that the return on the bank equals its 1th percentile 

value, with the VaR of the portfolio of financial sector firms equal to the 1th percentile of its one 

day return distribution.  The Reading Imprecision plot expresses the CoVaR point estimates and 

confidence intervals in terms of the percentile location of their values in the empirical 

distribution of the CoVaR point estimates.         
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