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Abstract

Financial markets are incomplete, thus for many agents borrowing is possible only by ac-

cepting a financial contract that specifies a fixed repayment. However, the future income that

will repay this debt is uncertain, so risk can be inefficiently distributed. This paper argues that

a monetary policy of nominal GDP targeting can improve the functioning of incomplete finan-

cial markets when incomplete contracts are written in terms of money. By insulating agents’

nominal incomes from aggregate real shocks, this policy effectively completes the market by

stabilizing the ratio of debt to income. The paper argues that the objective of nominal GDP

should receive significant weight even in an environment with other frictions that have been

used to justify a policy of strict inflation targeting.
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1 Introduction

In the last twenty years, inflation targeting has been adopted by an increasingly large number

of central banks. Accompanying that rise has been a debate on whether inflation targeting has

narrowed the focus of monetary policy too much, in particular, whether it leads central banks to

take their eyes off developments in financial markets. This debate has understandably become more

active in recent years. Some would argue that too much focus on low and stable inflation may allow

potentially dangerous financial imbalances to build up in credit and asset markets (Christiano, Motto

and Rostagno, 2007, Christiano, Ilut, Motto and Rostagno, 2010, White, 2009), perhaps justifying

a monetary policy that leans against large movements in asset prices and credit growth. Others

would argue that targeting asset prices is either undesirable or ineffectual (Bernanke and Gertler,

2001), or that ‘flexible’ inflation targeting can be adapted to accommodate a world where there

is a tension between price stability and financial stability, and that it would be unwise to discard

inflation targeting’s role in providing a clear nominal anchor (Woodford, 2011).

The canonical justification for inflation targeting (see, for example, Woodford, 2003) is that it

promotes efficiency in goods markets by avoiding the relative-price distortions that would occur with

high or volatile inflation. Stability of inflation can also contribute to a efficient level of overall eco-

nomic activity (closing the ‘output gap’) because the Phillips curve implies a link between inflation

fluctuations and output gap fluctuations. The theories of nominal rigidities that provide the intel-

lectual support for this view have been extensively researched. Still much less researched, however,

are the types of monetary policies that would promote efficiency in financial markets. Here, there is

less consensus on the distortions that monetary policy should be aiming to avoid or to correct, and

the extent to which correcting financial-market distortions is in conflict with correcting distortions

in goods markets.

This paper begins from the observation that financial markets are incomplete, so many agents

wishing to borrow can only do so by agreeing to financial contracts that specify fixed repayments in

the future. The future real incomes that will be used to repay these debts are however uncertain.

Such incomplete contracts lead to the burden of risk being unevenly distributed among agents,

which is inefficient. If financial contracts are written in terms of monetary units then a monetary

policy that targets nominal GDP can help in minimizing the inefficiency of financial markets. The

argument is that this policy stabilizes the debt-to-GDP ratio in response to aggregate shocks, which

will effectively lead to financial markets that completely span the risk coming from aggregate shocks.

A policy of strict inflation targeting would fail to deliver this efficient outcome and would instead

lead to inefficient fluctuations in levels of debt and interest rates.

These conclusions are obtained analytically from a tractable heterogeneous-agents model that

can be used to study the effects of different monetary policies on the efficiency of financial markets

and to derive optimal monetary policy. The model contains overlapping generations of individuals

who earn uncertain real incomes that vary over each individual’s lifetime. Individuals are differently

exposed to shocks to GDP because of the pattern of labour income over the lifecycle: most labour

income is earned when middle-aged, and relatively little when young or old. There is thus a role for
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financial markets in facilitating borrowing, saving, and risk sharing between individuals. Individuals

with concave utility functions would like to smooth consumption over time and over different states

of the world.

The financial markets that individuals have access to are incomplete. It is assumed individuals

cannot borrow by short-selling state-contingent bonds (Arrow-Debreu securities). Borrowing must

take the form of non-contingent debt contracts, which are denominated in terms of money. These

are arguably reasonable assumptions for most households. As savers, individuals can buy any assets

that are traded. In equilibrium, savers must hold the securities issued by borrowers, so the only

financial market that operates is for nominal non-contingent bonds.

In this environment, individuals borrow when young and repay their debts when middle-aged.

They then save by lending to the next generation of young to fund consumption when they are

old. However, when the young choose how much to borrow, they do not know the future course

the economy will take, which will affect their future labour income. Will there be a productivity

slowdown, a deep and long-lasting recession, or even a ‘lost decade’ of poor economic performance

to come? Or will unforeseen technological developments or terms-of-trade movements boost future

incomes and good economic management successfully steer the economy on a path of steady growth?

The young do not know what is to come, but must choose how much to borrow (and fix what they

must contractually repay) prior to this information being revealed.

Now suppose the central bank is following a policy of strict inflation targeting. Such a pol-

icy transforms financial contracts specifying non-contingent nominal repayments into contracts re-

quiring non-contingent real repayments. The real value of the debts the young must repay when

middle-aged remains the same irrespective of what subsequently happens to the economy. Suppose

that GDP is much lower than the currently middle-aged expected when they were young. Their

labour income turns out to be too low relative to what they must repay, hence their consumption

(whether now or in the future) must fall sharply. At the same time, the savings of the old maintain

their real value, thus their consumption is largely insulated from the shock because it is principally

financed from savings rather than labour income. Similarly, had the realization of GDP growth

been better than expected then the middle-aged would have benefited disproportionately because

their debt repayments are fixed, while the old would ‘miss the party’ and be stuck with a relatively

low consumption level.

This model is designed as a simple representation of a world where some agents are leveraged,

while other agents hold the corresponding debt obligations as safe assets. The young would like to

smooth consumption, but can only do this by leveraging their future income stream. Consumption,

as the residual between fluctuating income and fixed debt repayments, is more volatile as a result

of this leverage. In equilibrium, if borrowers cannot issue risky liabilities, savers end up holding

risk-free assets. Risk is thus very unevenly distributed among agents.

The consequences of this uneven distribution of risk will be seen in financial markets where credit

aggregates, interest rates, and asset prices will display larger fluctuations in response to shocks were

the central bank to follow a policy of strict inflation targeting. Following a positive shock to GDP

growth, inflation targeting maintains the real value of maturing debt, so the ratio of repayments to

2



income falls. This sets off a credit boom with new lending growing faster than GDP. The intuition

is that with risk concentrated in a subset of the population, the beneficiaries of the shock lend to

those who did not directly benefit, with the aim of smoothing consumption over their lifetimes.

In order to persuade others to borrow more, this expansion of credit drives down long-term real

interest rates, inflating the prices of bonds and other assets by increasing the present discounted

value of any stream of future payments. Similarly, strict adherence to an inflation target following

an adverse shock to GDP leads to a greater deleveraging as the burden of repaying maturing debt

rises, which reduces funds available for new lending. As credit becomes scarce, real interest rates

rise and asset prices fall.

In what sense are the outcomes described above inefficient? The young realize that a non-

contingent debt contract, while allowing them to consume more when their income is initially low,

exposes them to greater consumption volatility in the future. Ex post, they would have large gains

in some states of the world, and large losses in other states, while the old would have little to gain or

lose in any states of the world. This is inefficient from an ex-ante perspective. If financial markets

were complete, the young would prefer to borrow by short-selling contingent bonds. They would

want to sell relatively few bonds paying off in future states of the world where GDP and thus incomes

are low, and sell relatively more in good states of the world. As a result, prices of contingent bonds

paying off in bad states would be relatively expensive and those paying off in good states relatively

cheap. These price differences would entice middle-aged individuals saving for retirement to shift

away from non-contingent bonds and take on some risk in their portfolios. In this way, mutually

welfare-improving trades would take place in complete financial markets.

Through this mechanism, complete financial markets would allow for risk sharing among the

individuals in the economy. This provides insurance for the young by reducing their future liabilities

in states of the world where income is low, balanced by increasing liabilities in good states. With

risk evenly distributed among individuals, credit volumes and asset prices would be more stable.

The consequences of a shock to GDP would not fall on some individuals more than others because

maturing liabilities would move in line with incomes. With no disproportionate winners or losers,

there would be no fluctuations in available funds to lend relative to the demand to borrow those

funds. The economy then enjoys a more stable debt-to-GDP ratio, and more stable asset prices.

In the absence of complete financial markets, strict inflation targeting implies that risk is not

shared efficiently among individuals, and that quantities and prices in financial markets are too

volatile as a result. But what alternative monetary policies could do better? While incomplete

financial contracts are non-contingent in nominal terms, the real value of the monetary unit depends

on monetary policy, so the real contingency of financial contracts is actually endogenous to monetary

policy. Efficient risk sharing requires that individuals subject to income risk are insured through

adjustment of liabilities in line with income. This suggests a monetary policy of targeting the debt-

to-GDP ratio. Since the non-contingent terms of financial contracts are expressed in terms of money,

monetary policy can influence this ratio simply by changing the price level.

Faced with aggregate shocks to real GDP, it is shown that stabilizing the debt-to-GDP ratio at

some target value in a world of incomplete markets is equivalent to achieving the same allocation
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of consumption as would prevail with complete financial markets. Thus, a monetary policy that

achieves the ex-ante efficient sharing of risk must stabilize this ratio. However, simply adopting

the debt-to-GDP ratio as a target for monetary policy in place of targeting a rate of inflation is

highly unsatisfactory. While one instrument of policy is sufficient to hit one target, a policy of

targeting a ratio completely fails to provide the economy with a nominal anchor. It would leave

inflation expectations undetermined, which could then drift arbitrarily. This abandons one of the

most important advantages of inflation targeting: the provision of a clear nominal anchor.

However, there exists an alternative policy that both achieves Pareto efficiency in financial

markets and delivers a nominal anchor. Given that financial contracts specify liabilities as fixed

monetary amounts, stabilization of the debt-to-GDP ratio is equivalent to stabilizing the nominal

value of income, in other words, a policy of targeting nominal GDP. Even if the real value of GDP

fluctuates unexpectedly, borrowers are shielded from excessive risk by a monetary policy that ensures

nominal incomes do not deviate from predetermined nominal liabilities. Furthermore, by setting a

target for the nominal level of GDP, given real GDP, the price level and other nominal variables are

firmly anchored. Thus, a policy of nominal GDP targeting effectively completes financial markets in

regard to aggregate shocks (though obviously not for idiosyncratic shocks) as well as pinning down

expectations of inflation.

Such a policy naturally entails some unpredictable fluctuations in inflation. However, these would

not be of an excessive magnitude: the standard deviation of inflation would equal the standard

deviation of real GDP growth. Furthermore, it is important to appreciate that this inflation is not

costly for one of the reasons often cited: the redistribution of wealth between debtors to creditors.

Some ex-post transfers of wealth resulting from unexpected inflation are precisely what is needed to

obtain ex-ante efficient risk sharing. While there are always winners and losers from any transfers

ex post, it could be argued that under nominal GDP targeting these simply mimic the contingencies

in repayments between debtors and creditors that would have been mutually agreeable in a world of

complete financial markets. But nonetheless, it could still be objected that there are other costs of

inflation such as relative price distortions in goods markets and menu costs that have been ignored

in the argument above.

To address these potential trade-offs, the model is extended to include more frictions. First,

introducing differentiated goods and nominal rigidities in goods prices implies that inflation leads

to inefficiencies in the allocation of resources as relative prices are distorted. To study the trade-

off between efficiency in financial markets and efficiency in goods markets, a utility-based loss

function is derived. The loss function contains two terms: inflation squared, representing the losses

from relative-price distortions in goods markets, and the debt-to-GDP ratio squared, representing

the losses from the incompleteness of financial markets. Optimal monetary policy is then derived

analytically. Unsurprisingly, the optimal policy is a mixture of the two policies that address each of

the two inefficiencies individually: nominal GDP targeting for financial markets, and strict inflation

targeting for goods markets. A mixture of these two policies is a weighted nominal GDP target, with

the price level receiving a higher weight than real GDP. For reasonable calibrations of the model,

the optimal policy remains far from strict inflation targeting. The intuition is that the inflation
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fluctuations under nominal GDP targeting are relatively modest given the volatility of real GDP.

A further extension introduces an endogenous labour supply decision. With flexible prices and

wages, the optimality of nominal GDP targeting does not depend on whether GDP is modelled as an

exogenous endowment, or as the outcome of a labour supply decision in a world with TFP shocks.

However, combined with sticky prices, it means that the central bank also needs to be concerned

about stabilizing the output gap. It is shown that the utility-based loss function now includes three

terms: inflation squared, debt-to-GDP squared, and the output gap squared. The goal of stabilizing

inflation is in conflict with the goal of stabilizing the debt-to-GDP ratio as already described. In

conventional analyses of optimal monetary policy, there is often a ‘divine coincidence’ between the

policy that stabilizes inflation and the policy that stabilizes the output gap. This is shown to break

down with incomplete markets, so there would now be a tension between inflation and output gap

stabilization even if the central bank did not care directly about the debt-to-GDP ratio.

This tension between inflation stabilization and output gap stabilization with incomplete markets

indicates that the potential inefficiency of strict inflation targeting goes beyond just considerations

of risk-sharing. It is shown that the debt-to-GDP ratio acts as an endogenous cost-push shock that

drives a wedge between the equilibrium and the efficient levels of aggregate output. The intuition

is that with incomplete markets and a policy of strict inflation targeting, labour income risk is

unevenly distributed. With stronger income effects for those supplying more labour, this leads to

too little labour being supplied when labour productivity is high and too much being supplied when

productivity is low. The policy of strict inflation targeting thus reduces the correlation between

productivity and hours, implying a sub-optimal response to TFP shocks.

This paper is related to a number of areas of the literatures on monetary policy and financial

frictions. First, there is the empirical work of Doepke and Schneider (2006) documenting the effects

of inflation in redistributing wealth between debtors and creditors. In the context of government

debt, the role of inflation in affecting the real value of nominally non-contingent bonds is the subject

of a well-established literature starting from Chari, Christiano and Kehoe (1991), and expanded fur-

ther in Chari and Kehoe (1999), with Lustig, Sleet and Yeltekin (2008) being a recent contribution.

One finding is that inflation needs to be extremely volatile to complete the market. As a result,

Schmitt-Grohé and Uribe (2004) and Siu (2004) show that once some nominal rigidity is added to

the model so that inflation fluctuations have a cost, the optimal policy is found to be very close to

strict inflation targeting. In the context of the household sector, a more closely related contribution

is that of Pescatori (2007), who studies the effect of pre-existing inequality on optimal monetary

policy decisions in a model with incomplete markets, taking account of the fact that changes in

interest rates will affect borrowers and savers differently. Also focusing on households and incom-

plete markets, and in particular on household saving behaviour, Kryvtsov, Shukayev and Ueberfeldt

(2011) study optimal monetary policy in a model where the aggregate level of savings is not socially

optimal.

There is now more generally a burgeoning literature on incorporating financial frictions into

models for monetary policy analysis. That literature stresses different frictions from those considered

in this paper. Cúrdia and Woodford (2009) present a model of credit spreads between savers
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and borrowers and derive implications for optimal monetary policy. Then there are papers that

study borrowing and collateral constraints of the kind found in Kiyotaki and Moore (1997), or the

financing of firms subject to costly state verification, as in Bernanke, Gertler and Gilchrist (1999).

Contributions in this area include Faia and Monacelli (2007) and De Fiore and Tristani (2009).

Work by Christiano, Motto and Rostagno (2010) emphasizes the role played by ‘risk shocks’ faced

by entrepreneurs.

Finally, this paper is related to the existing literature on nominal GDP targeting, with Meade

(1978), Bean (1983), and Hall and Mankiw (1994) being key contributions. The argument for

nominal GDP targeting here differs from those put forward by other advocates.

The plan of the paper is as follows. Section 2 sets out the basic model. The equilibrium in the

case of an endowment economy is derived in section 3, and optimal monetary policy is characterized.

Section 4 introduces sticky prices into the model, and section 5 adds an endogenous labour supply

decision. Finally, section 6 draws some conclusions.

2 The model

The model is of an economy with overlapping generations of individuals. Time is discrete and is

indexed by t. A new generation of individuals is born in each time period and each individual lives

for three periods. During their three periods of life, individuals are referred to as the ‘young’ (y), the

‘middle-aged’ (m), and the ‘old’ (o), respectively. An individuals derives utility from consumption

of a composite good at each point in his life. At time t, per-person consumption of the young,

middle-aged, and old is denoted by Cy,t, Cm,t, and Co,t. Individuals have identical utility functions,

which have a power utility functional form. Future utility is discounted at a rate % (0 < % < ∞).

The intertemporal elasticity of substitution is σ (0 < σ <∞, the coefficient of relative risk aversion

is 1/σ). The utility Ut of the generation born at time t is

Ut =
C

1− 1
σ

y,t − 1

1− 1
σ

+ β
C

1− 1
σ

m,t+1 − 1

1− 1
σ

+ β2
C

1− 1
σ

o,t+2 − 1

1− 1
σ

, where β ≡ 1

1 + %
. [2.1]

The discount factor β satisfies 0 < β < 1. There is no intergenerational altruism.

The number of young individuals born in any time period is exactly equal to the number of old

individuals alive in the previous period who now die. The economy thus has no population growth

and a balanced age structure. Assume that the population of individuals currently alive has measure

one, with each generation having measure one third. Aggregate consumption at time t is denoted

by Ct:

Ct =
1

3
Cy,t +

1

3
Cm,t +

1

3
Co,t. [2.2]

All individuals of the same age at the same time receive the same income, with Yy,t, Ym,t, and

Yo,t denoting the per-person incomes (in terms of the composite good) of the young, middle-aged,

and old, respectively, at time t. Incomes will be modelled initially as exogenous endowments, with

this assumption being relaxed in section 4 and section 5. Age-specific incomes at time t are assumed
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Figure 1: Age profile of non-financial income

Age

Income/GDP per person

1

Young Middle-aged Old

1− βγ

1 + (1 + β)γ

1− γ

(1 + 2β)γ

−(2 + β)γ

to be time-invariant multiples of aggregate income Yt, with αy, αm, and αo denoting the multiples

for the young, middle-aged, and old, respectively:

Yy,t = αyYt, Ym,t = αmYt, Yo,t = αoYt, where αy,αm,αo ∈ (0, 3) and
1

3
αy +

1

3
αm +

1

3
αo = 1.

[2.3]

The income multiples αy, αm, and αo are parameterized to specify a hump-shaped life-cycle

income profile described by a single parameter γ:

αy = 1− βγ, αm = 1 + (1 + β)γ, and αo = 1− γ. [2.4]

The income multiples are all well-defined and strictly positive for any 0 < γ < 1. The general

pattern is depicted in Figure 1. As γ → 0, the economy approaches a limiting case where all

individuals alive at the same time receive the same income, and as γ→ 1, the difference in income

over the life-cycle is at its maximum with old individuals receiving a zero income. Immediate values

of γ imply life-cycles that lie between these extremes, thus the parameter γ can be interpreted as the

gradient of individuals’ life-cycle income profiles. The presence of the parameter β in [2.4] implies

that the income gradient from young to middle-aged is less than the gradient from middle-aged to

old.1

There is no government spending and no international trade, and the composite good is not

storable, hence the goods-market clearing condition is

Ct = Yt. [2.5]

Let gt ≡ (Yt − Yt−1)/Yt−1 denote the growth rate of aggregate income between period t − 1 and t.

It is assumed that the fluctuations in the stochastic process {gt} are bounded in the sense that in

every time period and in every state of the world, no generation has a monotonic life-cycle income

1Introducing this feature implies that the steady state of the model will have some convenient properties. See
Proposition 1 in section 3.
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path. This requires that fluctuations in aggregate income are never large enough to dominate the

variation in individual incomes over the life-cycle.2

The economy has a central bank that defines a reserve asset, referred to as ‘money’. Reserves

held between period t and t+ 1 are remunerated at a nominal interest rate it known in advance at

time t. The economy is ‘cash-less’ in that money is not required for transactions, but money is used

by agents as a unit of account in pricing and in financial contracts. One unit of goods costs Pt units

of money at time t, and πt ≡ (Pt − Pt−1)/Pt−1 denotes the inflation rate between period t− 1 and

t. Monetary policy is specified as a rule for setting the nominal interest rate, for example a Taylor

rule:

1 + it = ψ0(1 + πt)
ψπ , [2.6]

where the coefficient ψπ measures the sensitivity of nominal interest rates to inflation movements.

It is assumed the Taylor principle ψπ > 1 is satisfied. Finally, the central bank maintains a net

supply of reserves equal to zero in equilibrium.

2.1 Incomplete markets

Asset markets are assumed to be incomplete. No individual can short-sell state-contingent bonds

(Arrow-Debreu securities), and hence in equilibrium, no individual can buy such securities. The

only asset that can be traded is a one-period, nominal, non-contingent bond. Individuals can take

positive or negative positions in this bond (save or borrow), and there is no limit on borrowing other

than being able to repay in all states of the world given non-negativity constraints on consumption.

Hence no default occurs, and the bonds are therefore risk free in nominal terms. Bonds that have

a nominal face value of 1 paying off at time t + 1 trade at price Qt in terms of money at time t.

These bonds are perfect substitutes for the reserve asset defined by the central bank, so the absence

of arbitrage opportunities requires that

Qt =
1

1 + it
. [2.7]

The central bank’s interest-rate policy thus sets the nominal price of the bonds.

Let By,t and Bm,t denote the net bond positions per person of the young and middle-aged at

the end of time t. The absence of intergenerational altruism implies that there will be no bequests

(Bo,t = 0) and the young will begin life with no assets. The budget identities of the young, middle-

aged, and old are respectively:

Cy,t +
Qt

Pt
By,t = Yy,t, Cm,t +

Qt

Pt
Bm,t = Ym,t +

1

Pt
By,t−1, and Co,t = Yo,t +

1

Pt
Bm,t−1. [2.8]

Maximizing the expected value EtUt of the lifetime utility function [2.1] for each generation with

2The required bound on the fluctuations in gt will be smaller when the the life-cycle gradient parameter γ is
smaller.
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Figure 2: Saving and borrowing patterns

Young Middle-aged Old

RepayLend

Time

Young Middle-aged Old

Young Middle-aged Old

RepayLend

Generation t

Generation t+ 1

Generation t+ 2

t t+ 1 t+ 2 t+ 3 t+ 4

respect to its bond holdings, subject to the budget identities [2.8], implies the Euler equations:

C
− 1
σ

y,t = β
1

Qt

Et

[
Pt
Pt+1

C
− 1
σ

m,t+1

]
, and C

− 1
σ

m,t = β
1

Qt

Et

[
Pt
Pt+1

C
− 1
σ

o,t+1

]
. [2.9]

There is assumed to be no issuance of bonds by the government, so the bond market clearing

condition is
1

3
By,t +

1

3
Bm,t = 0. [2.10]

The equilibrium saving and borrowing patterns in the economy are depicted in Figure 2. Given

the life-cycle income pattern in Figure 1, the young would like to borrow and the middle-aged would

like to save, with the young repaying when they are middle-aged and the middle-aged receiving the

repayment when they are old.3

It is convenient to introduce variables measured relative to GDP Yt. These are denoted with

lower-case letters. The consumption-to-GDP ratios for each generation are cy,t, cm,t, and co,t. It

is also convenient to introduce one variable that measures the gross amount of bonds issued.4 Let

Bt ≡ Bm,t denote the amount of bonds purchased by the middle-aged at time t, which will be equal

in equilibrium to the amount issued by the young. Thus, the gross level of borrowing in the economy

is Bt, with Dt ≡ QtBt/Pt being the real value of this debt at the time of issuance. The debt-to-GDP

3This type of exchange would not be feasible in an overlapping generations model with two-period lives. In that
environment, saving is only possible by acquiring a physically storable asset or holding an ‘outside’ financial asset
such as fiat money or government bonds. While the three-period lives OLG model of Samuelson (1958) also has the
feature that saving requires an ‘outside’ asset, the life-cycle income profile there is monotonic. With a non-monotonic
life-cycle income profile, trade between generations is possible even with only ‘inside’ financial assets. As will be seen,
under the assumptions of the model here, there is no Pareto-improvement from introducing an ‘outside’ asset because
while the equilibrium will be inefficient, it will not be dynamically inefficient.

4The net bond positions of the household sector and the whole economy are of course zero under the assumptions
made.
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ratio is denoted by dt. These definitions are listed below for reference:

cy,t ≡ Cy,t/Yt, cm,t ≡ Cm,t/Yt, co,t ≡ Co,t/Yt, and dt ≡
QtBt

PtYt
. [2.11]

The ex-post real return rt on nominal bonds between period t− 1 and t is the nominal interest

rate it−1 adjusted for inflation πt:

1 + rt =
1 + it−1
1 + πt

. [2.12]

The ex-ante real interest rate ρt between periods t and t+1 is defined as the conditional expectation

of the ex-post return between those periods:

1 + ρt = Et

[
1 + it

1 + πt+1

]
, [2.13]

or equivalently, ρt = Etrt+1.
5

Using the age-specific incomes [2.3], bond-market clearing [2.10] (implying By,t = −Bt), the

no-arbitrage condition [2.7], and the definitions in [2.11] and [2.12], the budget identities in [2.8] for

each generation can be written as:

cy,t = αy + dt, cm,t + dt = αm −
(

1 + rt
1 + gt

)
dt−1, and co,t = αo +

(
1 + rt
1 + gt

)
dt−1, [2.14a]

where gt is the growth rate of GDP Yt. Similarly, the Euler equations in [2.9] become:

βEt

[
(1 + rt+1)(1 + gt+1)

− 1
σ

(
cm,t+1

cy,t

)− 1
σ

]
= βEt

[
(1 + rt+1)(1 + gt+1)

− 1
σ

(
co,t+1

cm,t

)− 1
σ

]
= 1.

[2.14b]

Finally, goods-market clearing [2.5] with the definition of aggregate consumption [2.2] requires:

1

3
cy,t +

1

3
cm,t +

1

3
co,t = 1. [2.15]

Taking as given GDP growth gt (with this variable being treated as exogenous for now), equations

[2.14a]–[2.14b] together with the ex-post Fisher equation [2.12] and a specification of monetary

policy, such as [2.6], the variables cy,t, cm,t, co,t, dt, rt, it, and πt can in principle be determined. By

Walras’ law, the goods market clearing condition [2.15] is redundant, so this equation is dropped.

Before studying the equilibrium of the economy under different monetary policies, it is helpful

to study the hypothetical world of complete financial markets as a benchmark.

2.2 The complete markets benchmark

Suppose it were possible for individuals to take short and long positions in a range of Arrow-Debreu

securities for each possible state of the world. Without loss of generality, assume the payoffs of

5This real interest rate is important for saving and borrowing decisions, but there is no actual real risk-free asset
to invest in.
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these securities are specified in terms of real consumption, and their prices are quoted in real terms.

Assume (again without loss of generality) the securities are traded sequentially for states of the world

that will be realized one period in the future. Let Kt+1 denote the kernel of prices for securities

with payoffs of one unit of consumption at time t+ 1 in terms of consumption at time t. The prices

are given relative to the (conditional) probabilities of each state.

Let Sy,t+1 and Sm,t+1 denote the per-person net positions in the Arrow-Debreu securities at the

end of period t of the young and middle-aged respectively at time t (with So,t+1 = 0 for the old, who

hold no assets at the end of period t). These variables give the real payoffs individuals will receive

(or make, if negative) at time t + 1. The price of taking net position St+1 at time t is EtKt+1St+1

(this is the amount received from selling securities if negative).

In what follows, the the levels of consumption obtained with the complete markets with an

asterisk to distinguish them from the consumption outcomes with incomplete markets. The budget

constraints of the young, middle-aged, and old are:

C∗y,t + EtKt+1Sy,t+1 = Yy,t, C∗m,t + EtKt+1Sm,t+1 = Ym,t + Sy,t, and C∗o,t = Yo,t + Sm,t. [2.16]

Maximizing utility [2.1] for each generation with respect to holdings of Arrow-Debreu securities,

subject to the budget constraints [2.16], implies the Euler equations:

β

(
C∗m,t+1

C∗y,t

)− 1
σ

= Kt+1, and β

(
C∗o,t+1

C∗m,t

)− 1
σ

= Kt+1, [2.17]

where these hold for all states of the world at time t + 1. Market clearing for the Arrow-Debreu

securities requires:
1

3
Sy,t +

1

3
Sm,t = 0. [2.18]

Let c∗y,t, c
∗
m,t, and c∗o,t denote the complete-markets generation-specific levels of consumption

relative to aggregate output Yt, analogous to those defined in [2.11] for the case of incomplete

markets. Let St+1 ≡ Sm,t+1 denote the gross quantities of Arrow-Debreu securities outstanding at

the end of period t, and let D∗t = EtKt+1St+1 be the real value of these securities at current market

prices. The value of the securities relative to GDP is denoted by d∗t , and the ex-post real return on

the portfolio by r∗t :

d∗t =
D∗t
Yt

=
EtKt+1St+1

Yt
, and 1 + r∗t =

St
D∗t−1

=
St

Et−1KtSt
. [2.19]

Using the age-specific income levels from [2.3], market-clearing for Arrow-Debreu securities [2.18]

(implying Sy,t+1 = −St+1), and the definitions in [2.19], the budget constraints [2.16] can be ex-

pressed as follows:

c∗y,t = αy + d∗t , c∗m,t + d∗t = αm −
(

1 + r∗t
1 + gt

)
d∗t−1, and c∗o,t = αo +

(
1 + r∗t
1 + gt

)
d∗t−1, [2.20a]
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Using the definitions in [2.19], the Euler equations [2.17] imply

βEt

[
(1 + r∗t+1)(1 + gt+1)

− 1
σ

(
c∗m,t+1

c∗y,t

)− 1
σ

]
= βEt

[
(1 + r∗t+1)(1 + gt+1)

− 1
σ

(
c∗o,t+1

c∗m,t

)− 1
σ

]
= 1,

[2.20b]

and
c∗m,t+1

c∗y,t
=
c∗o,t+1

c∗m,t
. [2.20c]

Note that equations [2.20a]–[2.20b] have exactly the same form as their incomplete-markets coun-

terparts [2.14a]–[2.14b]. The distinctive feature of complete markets is that equation [2.20c] also

holds (note that with [2.20c], one of the equations in [2.20b] is redundant, so there are only two

independent equations in [2.20b]–[2.20c]). There is also the equivalent of equation [2.15], which

remains redundant by Walras’ law.

As will be seen, the system of equations comprising [2.20a]–[2.20c] determines the variables c∗m,t,

c∗o,t, d
∗
t , r

∗
t taking aggregate real growth gt as given. Intuitively, since markets are complete (and

real GDP is assumed exogenous), monetary policy cannot affect real consumption allocations or

financial-market variables in real terms. The absence of arbitrage opportunities implies that a risk-

free nominal bond would have price Qt = Et[Kt+1(Pt/Pt+1)] in terms of money. Using [2.7] and

[2.17], the nominal interest rate must satisfy the following asset-pricing equation:

β(1 + it)Et

[
(1 + gt+1)

− 1
σ

(1 + πt+1)

(
c∗m,t+1

c∗y,t

)− 1
σ

]
= 1. [2.21]

The equation above, together with a specification of monetary policy such as equation [2.6], deter-

mines the nominal interest rate it and inflation πt.

2.3 Pareto-efficient allocations

Now consider the economy from the perspective of a social planner who has the power to mandate

allocations of consumption to specific individuals (by making the appropriate transfers). The planner

is utilitarian and maximizes a weighted sum of individual utilities subject to the economy’s resource

constraint.

Starting at some time t0, the Pareto weight assigned to the generation born at time t is denoted

by βt−t0ωt/3, where the term ωt is scaled by the subjective discount factor βt−t0 between time t0

and t, and the population share 1/3 of that generation at any point when its members are alive (the

scaling is without loss of generality since ωt has not been specified). The weight ωt can be a function

of the state of the world at time t when the corresponding generation is born, but does not depend

on the state of the world to be realized at times t+ 1 and t+ 2. Thus, a generation’s Pareto weight

does not change during its lifetime (but is generally not known prior to its birth). This implies that

the notion of efficiency here is ex-ante efficiency judged from the standpoint of each generation at
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birth (but not prior to birth).6

The social welfare function for a planner starting at time t0 is:

Wt0 = Et0

[
1

3

∞∑
t=t0−2

βt−t0ωtUt

]
. [2.22]

The Lagrangian for maximizing social welfare subject to the economy’s resource constraint (given

by [2.2] and [2.5]) is:

Lt0 = Et0

[
1

3

∞∑
t=t0−2

βt−t0ωtUt +
∞∑
t=t0

βt−t0Y
− 1
σ

t ℵt
(
Yt −

1

3
Cy,t −

1

3
Cm,t −

1

3
Co,t

)]
, [2.23]

where the Lagrangian multiplier on the time-t resource constraint is βt−t0Y
− 1
σ

t ℵt (where the scaling

by βt−t0Y
− 1
σ

t is for convenience). Using the utility function [2.1], the first-order conditions with

respect to age-specific consumption levels Cy,t, Cm,t and Co,t are:

ωtC
− 1
σ

y,t = Y
− 1
σ

t ℵt, ωt−1C
− 1
σ

m,t = Y
− 1
σ

t ℵt, and ωt−2C
− 1
σ

o,t = Y
− 1
σ

t ℵt for all t ≥ t0. [2.24]

Manipulating these first-order conditions and using the definitions of age-specific consumption rel-

ative to aggregate income from [2.11]:

(
cm,t+1

cy,t

)− 1
σ

=

(
co,t+1

cm,t

)− 1
σ

=
ℵt+1

ℵt
for all t ≥ t0, [2.25]

where these equations hold in all states of the world at date t+ 1.

Now consider the complete-markets case from section 2.2. Since equation [2.20c] holds, it can be

seen using [2.24] that the implied consumption allocation is ex-ante Pareto efficient, being supported

by the following Pareto weights ω∗t :

ω∗t =
ℵ∗t

c∗y,t
− 1
σ

, where ℵ∗t = Et

[
∞∏
`=1

(
β(1 + r∗t+`)(1 + gt+`)

− 1
σ

)]
, [2.26]

with the equation for ℵ∗t derived from [2.20b] and [2.25].

To what extent can monetary policy achieve Pareto efficiency in a world of incomplete mar-

kets? Could monetary policy be used to achieve the complete-markets equilibrium characterized by

equations [2.20a]–[2.20c]? Given the form of the incomplete-markets equilibrium conditions [2.14a]–

[2.14b], all that monetary policy needs to do is ensure that equation [2.20c] holds. With one equation

to satisfy and one instrument, this should be possible. Intuitively, monetary policy will use inflation

to manipulate the debt-GDP ratio dt to ensure [2.20c] holds in equilibrium. Thus, in principle,

monetary policy can achieve one ex-ante Pareto-efficient allocation. Are other Pareto-efficient allo-

6This restriction is needed to make the notion of efficiency relevant. Otherwise with a fixed amount of goods each
period to allocate, any non-wasteful allocation would always be ex-post Pareto efficient.
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cations attainable? Since ex-ante efficiency requires equation [2.25] must hold, and since this implies

[2.20c], it follows that the only efficient allocation that might be implemented through monetary

policy is the complete-markets equilibrium.

3 Endowment economy

To understand the analysis of the model, it is helpful first to characterize the equilibrium and the

effects of monetary policy in an endowment economy. The general case of a production economy is

considered in a later section. Thus, Yt = At, where At is an exogenous stochastic process for the

endowment.

The equilibrium will also be approximated for fluctuations in the growth rate gt of aggregate

output around a zero-growth rate steady state (ḡ = 0).7 It is assumed that aggregate real income

growth is bounded with probability one, that is, |gt| ≤ Γ for some bound Γ . This rules out non-

stationarity in income growth, but the level of income can be either stationary or non-stationary

depending on the specification of the stochastic process for At (gt = (At − At−1)/At).
There are no idiosyncratic shocks, though aggregate shocks have different effects on different

generations, which in general they are not able completely to insure themselves against.

3.1 The steady state

The first step is to characterize when a unique steady state exists, and what are its characteristics

if so.

Proposition 1 The following hold whether or not markets are complete:

(i) There exists a steady state where consumption is equal to per-person aggregate income for all

generations:

c̄y = c̄∗y = 1, c̄m = c̄∗m = 1, and c̄o = c̄∗o = 1,

and in which the debt-to-GDP ratio is positive, and the real return on bonds is equal to

individuals’ rate of time preference:

d̄ = d̄∗ = βγ, and r̄ = r̄∗ = %.

Inflation is given by:

1 + π̄ =

(
1 + %

ψ0

) 1
ψπ−1

.

(ii) A sufficient condition for uniqueness of the steady state above is σ ≥ 1/2, and a necessary

condition is σ >
(

1
2+%

)
γ.

7There is no reason in principle why the aggregate real growth rate needs to be zero, but this is assumed for
simplicity. For reasonable assumptions on average growth, this is not likely to be important quantitatively.
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Proof See appendix A.1. �

It is assumed throughout that the parameters used are such that there is a unique steady state.

3.2 Fluctuations around the steady state

Log deviations of variables from their steady-state values are denoted with sans serif letters, for

example, dt ≡ log dt − log d̄. For all variables that are either interest rates or growth rates, the log

deviation is of the gross rate, for example, gt ≡ log(1+gt)−log(1+ ḡ) and rt ≡ log(1+rt)−log(1+ r̄).

For all variables that do not necessarily have a steady state, the sans serif equivalent denotes simply

the logarithm of the variable, for example, Yt ≡ log Yt.

With these definitions and the nature of the steady state characterized in Proposition 1, aggregate

income growth is gt = Yt − Yt−1, where Yt = At in terms of the exogenous endowment At. The

growth rate satisfies the bound |gt| ≤ log(1 + Γ) with probability one, in terms of the bound Γ .

The variables defined as ratios to GDP in [2.11] are such that cy,t = Cy,t − Yt, cm,t = Cm,t − Yt,

co,t = Co,t − Yt, and dt = Dt − Yt.

In the following, equations are log-linearized around the steady state and terms that are second-

order or higher in deviations from the steady state are suppressed. The Fisher identity [2.12] for

the ex-post real return rate on nominal bonds becomes

rt = it−1 − πt, [3.1]

where πt = Pt−Pt−1 is inflation. The ex-ante real interest rate from [2.13] is such that ρt = Etrt+1.

Making use of the parameterization [2.4] of the lifecycle income process with gradient γ, the

budget constraints [2.14a] for each generation take the following log-linear expressions:

cy,t = βγdt, cm,t = −βγdt − γ(rt − gt + dt−1), and co,t = γ(rt − gt + dt−1). [3.2a]

The log-linearized Euler equations [2.14b] for each generation are:

cy,t = Etcm,t+1 − σEtrt+1 + Etgt+1, and cm,t = Etco,t+1 − σEtrt+1 + Etgt+1. [3.2b]

The log-linearized goods market clearing condition [2.15] is the requirement cy,t+cm,t+co,t = 0, which

is seen to be automatically satisfied given the budget constraints in [3.2a]. Since each individual’s

consumption must also satisfy a non-negativity constraint, none of the log deviations cy,t, cm,t, or

co,t can grow without bound.

The system of five equations in [3.2a]–[3.2b] contains five endogenous variables cy,t, cm,t, co,t, rt,

and dt, and one exogenous variable gt. These equations can be solved subject to the requirement

that all of cy,t, cm,t, and co,t are bounded.

Proposition 2 Suppose that the parameters β, γ, and σ are such that the steady state described

in Proposition 1 is unique. The class of solutions to equations [3.2a]–[3.2b] with the restriction that

the variables cy,t, cm,t, and co,t must be bounded is given by:

15



(i) The debt-GDP ratio evolves over time according to

dt = λdt−1 −
1

δ

(
1− σ
σ

)
(2Et−1ft + ft−1) + νt, [3.3]

where νt is any bounded martingale difference stochastic process (Et−1νt = 0) and ft is the

stochastic process defined by

ft =
∞∑
`=1

ζ`−1Etgt+`, [3.4]

and with coefficients δ, λ, and ζ that depend on parameters β, γ, and σ as follows:

δ =
1

2

(1 + 2β) +

(
1− βγ

σ

)
+

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
) ; [3.5a]

λ =
2
(
βγ
σ
− 1
)

(1 + 2β) +
(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [3.5b]

ζ =
2β
(
γ
σ
− 1
)

(1 + 2β) +
(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) . [3.5c]

The coefficients are such that 0 < δ ≤ 2(1 + β), |λ| < β, and |ζ| < 1.

(ii) Given a solution for the debt-GDP ratio dt from [3.3], the ex-post real return rt must satisfy

the equation:

rt = −θdt − dt−1 + gt − ϑ
(

1− σ
σ

)
ft, [3.6]

where ft is as defined in [3.4] and the coefficients θ and ϑ depend on the parameters β, γ, and

σ as follows:

θ =

(1 + 2β) +
(
1 + βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
2
(
1 + γ

σ

) ; [3.7a]

ϑ =

2

(
(2 + β) +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2))
(
1 + γ

σ

)(
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)) . [3.7b]

The coefficients satisfy the restrictions β ≤ θ ≤ δ and ϑ > 0.

Proof See appendix A.3 �

In spite of having the same number of equations as endogenous variables, the presence of ex-

pectations of the future in the Euler equations [3.2b] combined with more stable eigenvalues than

predetermined variables (only dt−1 in the budget constraints [3.2a]) means that the evolution of
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the debt-GDP ratio dt is determined only up to a martingale difference νt. This means that [3.3]

uniquely determines the conditional expectation of the future debt-GDP ratio:

Et−1dt = λdt−1 −
1

δ

(
1− σ
σ

)
(2Et−1ft + ft−1) . [3.8]

For a particular innovation νt, the ex-post real return rt is determined by [3.6], and the age-specific

consumption-GDP ratios are determined by the budget constraints [3.2a].

The martingale difference νt can itself only be determined by augmenting the system of equations

with the Fisher equation [3.1] and a description of monetary policy such as the Taylor rule [2.6],

which has the following log-linear form:

it = ψππt. [3.9]

Note that there are two limiting cases in which the economy (up to a log-linear approximation)

reduces to a representative-agent economy, formally, where Cy,t = Cm,t = Co,t = Ct = Yt, and where

the representative-agent consumption Euler equation Etgt+1 = −σEtrt+1, that is:

Yt = EtYt+1 − σ(it − Etπt+1).

These special cases are when the gradient of the lifecycle income profile tends to zero (γ → 0)

so that individuals of all ages receive the same income, and when the intertemporal elasticity of

substitution tends to infinity (σ → ∞, linear utility). This conclusion follows from inspection of

equations [3.2a], [3.2b], [3.3], and [3.6].

3.3 Equilibrium with complete markets

Before taking up the question of how monetary policy affects the economy’s debt dynamics under

incomplete markets, it is useful to characterize the equilibrium with complete markets, which rep-

resent one ex-ante Pareto efficient allocation. With complete markets, the system of equations is

[2.20a]–[2.20c]. Equations [2.20a]–[2.20b] have exactly the same form as their incomplete-markets

equivalents [2.14a]–[2.14b], so their log-linear approximations are as in [3.2a]–[3.2b] with cy,t, cm,t,

co,t, rt, and dt replaced by c∗y,t, c
∗
m,t, c

∗
o,t, r

∗
t , and d∗t , where the asterisk is used to distinguish the

complete-markets outcome:

c∗y,t = βγd∗t , c∗m,t = −βγd∗t − γ(r∗t − gt + d∗t−1), c∗o,t = γ(r∗t − gt + d∗t−1); [3.10a]

c∗y,t = Etc
∗
m,t+1 − σEtr∗t+1 + Etgt+1, and c∗m,t = Etc

∗
o,t+1 − σEtr∗t+1 + Etgt+1. [3.10b]

In addition, with complete markets, equation [2.20c] must hold in all states of the world, which has

the following log-linear form:

c∗m,t+1 − c∗y,t = c∗o,t+1 − c∗m,t. [3.10c]
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It can be seen from [3.2b] that this equation holds in expectation under incomplete markets. Under

complete markets, it also holds in realization. This allows the free martingale difference νt in the

incomplete-markets debt dynamics to be determined.

The following result describes the equilibrium with complete markets and characterizes the ‘gaps’

between the incomplete and complete markets outcomes. These ‘gaps’ are denoted with a tilde, for

example, d̃t ≡ dt − d∗t and r̃t ≡ rt − r∗t .

Proposition 3 The solution to the system of equations [3.2a], [3.2b], and [3.10c] is as follows.

(i) The debt-GDP ratio d∗t evolves over time according to

d∗t = λd∗t−1 −
1

δ

(
1− σ
σ

)
(2ft + ft−1) , [3.11]

where ft is as defined in [3.4], and the coefficients δ and θ as given in [3.5a]–[3.7a]. The gap

between the debt-GDP ratios with incomplete and complete markets must satisfy the equation:

Etd̃t+1 = λd̃t. [3.12]

(ii) The real return on the complete markets portfolio is:

r∗t = λr∗t−1 + (gt − λgt−1) +
1

δ

(
1− σ
σ

)
(βft + 2(1 + β)ft−1 + ft−2) . [3.13]

The relationship between the gaps for the real return and the debt-GDP ratio is:

r̃t = −θd̃t − d̃t−1, [3.14]

where the coefficient θ is given in [3.7a].

(iii) The gaps between the consumption allocations under incomplete markets are:

C̃y,t = βγd̃t, C̃m,t = γ(θ− β)d̃t, and C̃o,t = −γθd̃t. [3.15]

(iv) In the case that either the intertemporal elasticity of substitution is one (σ = 1, log utility),

or the conditional expectation of future real output growth is equal to its unconditional mean

(Etgt+1 = 0), the complete-markets debt-GDP ratio is constant (d∗t = 0) and the real return

equal to the real growth rate (r∗t = gt).

Proof See appendix A.4 �

The complete markets equilibrium is unsurprisingly invariant to monetary policy (the level of

aggregate output is exogenous and the distribution of wealth is unaffected by monetary policy when

individuals can hold securities with known real returns). As has been discussed, in a world of

incomplete markets, the hypothetical complete-markets equilibrium is only ex-ante Pareto-efficient
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allocation that might be implemented through monetary policy. The gap between the consumption

allocation under incomplete and complete markets is seen in Proposition 3 to be a function of the

gap between the debt-GDP ratios under incomplete and complete markets. Implementation of the

complete-markets consumption allocation is thus seen to be equivalent to closing this ‘debt gap’.

3.4 Monetary policy

The impact of monetary policy on the debt gap can be studied with a system of three equations

in three endogenous variables: inflation πt, the nominal interest rate it, and the ‘debt gap’ d̃t. The

first equation describes the dynamics of the debt gap. This is [3.12]. The second follows from the

equilibrium ex-post real return using [3.1] and [3.14]:

λd̃t = Etd̃t+1; [3.16a]

πt = it−1 + θd̃t + d̃t−1 − r∗t . [3.16b]

The third equation is a description of monetary policy, whether a Taylor rule of the form [3.9], or

an alternative specification. The hypothetical real return r∗t under complete markets depends only

on the exogenous rate of GDP growth gt according to [3.13].

To begin with, consider a monetary policy of strict inflation targeting. This is represented by

the targeting rule πt = 0, which means that the nominal interest rate it is adjusted so that this

criterion holds at all times and in all states of the world. The effects of this policy are described

below.

Proposition 4 The unique equilibrium of the economy described by equations [3.16a]–[3.16b] to-

gether with strict inflation targeting rule πt = 0 is:

d̃t = λd̃t−1 +
1

θ
(r∗t − Et−1r∗t ) , [3.17a]

it = Etr
∗
t+1 − (1 + λθ)d̃t, [3.17b]

and constant inflation πt = 0 according to the target.

Proof With constant inflation, equation [3.16b] implies

θ(d̃t − Et−1d̃t)− (r∗t − Et−1r∗t ) = 0.

The equation [3.16a] for debt dynamics implies Et−1d̃t = λd̃t−1. Putting these together yields [3.17a].

Taking the conditional expectation of equation [3.16b] dated t+ 1 with πt+1 = 0 yields:

it + θEtd̃t+1 + d̃t − Etr∗t+1 = 0.

Substituting the expression for Etd̃t+1 from [3.16a] and rearranging leads to [3.17b]. This is the

nominal interest rate that implements the strict inflation target. �
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This policy fails to close the ‘debt gap’ whenever the complete markets return r∗t is not perfectly

predictable. Using equation [3.13], the forecast error is:

r∗t − Et−1r∗t = (gt − Et−1gt) +
β

δ

(
1− σ
σ

)
(ft − Et−1ft).

3.5 Optimal monetary policy

An obvious alternative policy is to adopt d̃t = 0 (that is, dt = d∗t ) as a targeting rule. Again,

this means adjusting the nominal interest rate to ensure that this criterion holds. The following

proposition characterizes the set of equilibria according to this targeting rule.

Proposition 5 The set of equilibria of the economy described by equations [3.16a]–[3.16b] and the

targeting rule d̃t = 0 is:

πt = zt−1 − (r∗t − Et−1r∗t ), [3.18a]

it = zt + Etr
∗
t+1, [3.18b]

with the target d̃t = 0 met, and where zt is any arbitrary stochastic process.

Proof First, note that the target is always consistent with equation [3.16a]. Next, to achieve the

target, equation [3.16b] implies that the unexpected component of inflation must satisfy

(πt − Et−1πt) = −(r∗t − Et−1r∗t ).

Since monetary policy can always generate an arbitrary inflation process, this shows that the target

is feasible. Now let zt ≡ Etπt+1 denote expectations of inflation one period ahead. Since πt =

Et−1πt + (πt − Et−1πt) by definition, equation [3.18a] follows. Taking conditional expectations of

[3.16b] dated t + 1 implies Etπt+1 = it − Etr∗t+1. Rearranging and using the definition of zt yields

equation [3.18b]. This solution satisfies all the necessary equations, but places no restrictions on the

stochastic process zt for inflation expectations. �

While this targeting rule achieves the optimal monetary policy d̃t = 0, it fails to pin down

inflation expectations. The problem is a familiar one: the policy focuses all attention on a real

variable, the debt-GDP ratio, and thus provides no nominal anchor.

What would be desirable is a policy that achieves Pareto efficiency while also providing a nominal

anchor. It turns out that nominal income targeting provides a solution to this challenge. Let

Nt ≡ PtYt denote aggregate nominal GDP, or in log terms, Nt ≡ Pt + Yt. Consider the following

policy of targeting an exogenous path for nominal income.

Proposition 6 The unique equilibrium of an economy described by equations [3.16a]–[3.16b] to-

gether with the targeting rule

Nt =
β

2
d∗t , [3.19]
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where d∗t is given in [3.11], is the following:

Pt =
β

2
d∗t − Yt, [3.20a]

it = Etr
∗
t+1 − Etgt+1 +

β

2

(
Etd

∗
t+1 − d∗t

)
, [3.20b]

and the debt gap is always closed (d̃t = 0).

Proof The nominal income target [3.19] directly implies equation [3.20a] for the price level. Taking

the first difference yields πt = (β/2)(d∗t −d∗t−1)−gt, and thus the unexpected component of inflation

is:

πt − Et−1πt =
β

2
(d∗t − Et−1d∗t )− (gt − Et−1gt). [3.21]

With rt = it−1+πt it must be the case that rt−Et−1rt = −(πt−Et−1πt), and thus that the unexpected

change in the real return gap r̃t is:

r̃t − Et−1r̃t = −(πt − Et−1πt)− (r∗t − Et−1r∗t ).

Substituting from [3.21] yields:

r̃t − Et−1r̃t = (gt − Et−1gt)−
β

2
(d∗t − Et−1d∗t )− (r∗t − Et−1r∗t ). [3.22]

Now observe from equations [3.11] and [3.13]:

d∗t − Et−1d∗t = −2

δ

(
1− σ
σ

)
(ft − Et−1ft), r∗t − Et−1r∗t = (gt − Et−1gt) +

β

δ

(
1− σ
σ

)
(ft − Et−1ft),

and hence r̃t = Et−1r̃t by substituting these into [3.22]. Equation [3.14] implies d̃t − Et−1d̃t =

−(1/θ)(̃rt − Et−1r̃t), so together with [3.12] it follows that d̃t = 0 for all t. With d̃t = 0, equation

[3.14] implies r̃t+1 = 0, so it = Etπt+1 + Etr
∗
t+1. The expression for the price level in [3.20a] implies

Etπt+1 = (β/2)(Etd
∗
t+1 − d∗t )− Etgt+1, which confirms [3.20b]. �

3.6 Effects of monetary policy shocks

To understand the consequences of different monetary policies it is helpful to analyse the conse-

quences of an exogenous change in the stance of monetary policy.

Proposition 7 Suppose there are no fundamental shocks to real GDP growth (gt = 0), but that

there are exogenous shocks to the growth rate of nominal income targeted by monetary policy:

∆Nt = εt, where ε ∼ i.i.d.(0, ς2). [3.23]
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The equilibrium of the economy is:

rt = it−1 − εt, [3.24a]

it = ρt = −(1 + λθ)d̃t, [3.24b]

d̃t = λd̃t−1 +
1

θ
εt. [3.24c]

Proof Nominal income is Nt = Pt+Yt. With no change in exogenous real GDP growth, ∆Nt = πt,

so it follows immediately that πt = εt. Equation [3.24a] then implied immediately by [3.1].

As gt = 0, it follows from [3.13] that r∗t = 0. Equating the unexpected components of both sides

of [3.16b] then implies πt −Et−1πt = θ(d̃t −Et−1d̃t). Since πt −Et−1πt = εt, this leads to equation

[3.24c].

Noting that Etπt+1 = Etεt+1 = 0 and taking expectations of [3.16b] at time t + 1 implies

it + θEtd̃t+1 + d̃t = 0. Then using [3.16a] confirms equation [3.24b]. Finally, with Etπt+1 = 0, [2.13]

implies it = ρt. �

3.7 Inflation-indexed bonds

An alternative incomplete markets economy is one with only inflation-indexed bonds, that is, risk-

free real bonds. Let ρ†t denote the real interest rate on such a bond between t and t+ 1. Repeating

the earlier steps for risk-free nominal bonds, the generational budget constraints and Euler equations

can be derived, where now the ex-post real return is simply the lagged real interest rate (r†t = ρ†t−1).

These have the following log-linear expressions, where the notation † is used to distinguish the

outcomes with indexed bonds:

c†y,t = βγd†t , c†m,t = −βγd†t − γ(ρ†t−1 − gt + d†t−1), and c†o,t = γ(ρ†t−1 − gt + d†t−1), [3.25a]

c†y,t = Etc
†
m,t+1 − σρ

†
t + Etgt+1, and c†m,t = Etc

†
o,t+1 − σρ

†
t + Etgt+1. [3.25b]

Since these equations have the same form as [3.2a]–[3.2b] with r†t = ρ†t−1, Proposition 2 can be applied

and equation [3.3] must hold. But unlike the case of nominal bonds, the martingale difference νt

can be determined without reference to monetary policy.

Proposition 8 With only risk-free real bonds, the dynamics of the debt-GDP ratio gap relative to

complete markets and the equilibrium real interest rate are:

d̃†t = λd̃†t−1 +
1

θ
(r∗t − Et−1r∗t ) , [3.26a]

ρ†t = Etr
∗
t+1 − (1 + λθ)d̃†t . [3.26b]

The equilibrium is invariant to monetary policy.
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Proof With rt = ρt−1, it follows that r̃t − Et−1r̃t = −(r∗t − Et−1r∗t ). Equation [3.26a] then follows

from equating the unexpected components of both sides of [3.14] and using [3.12]. Equation [3.14]

implies

ρt = r∗t+1 − θd̃t+1 − dt.

Taking conditional expectations of both sides and using [3.12] implies [3.26b]. �

4 Sticky prices

The optimal monetary policy of nominal income targeting found in section 3 entails fluctuations in

inflation. With fully flexible prices in product markets, this is without cost, but the conventional

argument for inflation targeting is that such inflation fluctuations lead to misallocation of resources in

goods and factor markets. This section adds sticky prices to the model to analyse optimal monetary

policy subject to both incomplete financial markets and nominal rigidities in goods markets. To

do this, it is necessary to introduce differentiated goods, imperfect competition, and a market for

labour that can be hired by different firms.

4.1 Differentiated goods

Consumption in individuals’ lifetime utility function [2.1] now denotes consumption of a composite

good made up of a measure-one continuum of differentiated goods. Young, middle-aged, and old

individuals share the same CES (Dixit-Stiglitz) consumption aggregator over these goods:

Ci,t ≡
(∫

[0,1]

Ci,t()
ε−1
ε d

) ε
ε−1

for i ∈ {y,m, o}, [4.1]

where Ci,t() is consumption of good  ∈ [0, 1] per individual of generation i at time t. The parameter

ε (ε > 1) is the elasticity of substitution between differentiated goods. The minimum nominal

expenditure Pt required to obtain one unit of the composite good and each individuals’ expenditure-

minimizing demand functions for the differentiated goods are

Pt =

(∫
[0,1]

Pt()
1−εd

) 1
1−ε

, and Ci,t() =

(
Pt()

Pt

)−ε
Ci,t for all  ∈ [0, 1], [4.2]

where Pt() is the nominal price of good , and where the demand functions are conditional on an

individual’s consumption Ci,t of the composite good. An individual’s total nominal expenditure on

all differentiated goods is ∫
[0,1]

Pt()Ci,t()d = PtCi,t. [4.3]
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4.2 Firms

There is a measure-one continuum of firms in the economy, each of which has a monopoly on the

production and sale of one of the differentiated goods. Each firm is operated by a team of owner-

managers who each have an equal claim to the profits of the firm. The participation of a specific

team of managers is essential for production, and managers cannot commit to provide input to

firms owned by outsiders. In this situation, managers will not be able to sell shares in firms, so the

presence of firms does not affect the range of financial assets that can be bought and sold. Firms

simply maximize the profits paid out to their owner-managers.

Consider the firm that is the monopoly supplier of good . The firm’s output Yt() is subject to

the linear production function

Yt() = AtNt(), [4.4]

where Nt() is the number of hours of labour hired by the firm, and At is the exogenous level of TFP

common to all firms. The firm is a wage taker in the perfectly competitive market for homogeneous

labour, where the real wage in units of composite goods is wt. The real profits of firm , paid out

as remuneration to the firm’s owner-managers, are:

Jt() =
Pt()

Pt
Yt()− wtNt(). [4.5]

Given the production function [4.4], the real marginal cost of production common to all firms

irrespective of their levels of output is

xt =
wt
At
. [4.6]

The firm faces a demand function derived from summing up consumption of good  over all

generations (each of which has measure 1/3):

1

3
Cy,t() +

1

3
Cm,t() +

1

3
Co,t() = Yt(). [4.7]

Using each individual’s demand function [4.2] for good  and the definition [2.2] of aggregate demand

Ct for the composite good, the total demand function faced by firm  is

Yt() =

(
Pt()

Pt

)−ε
Ct. [4.8]

As a monopolist, the firm sets the price Pt() of its good. Taking into account the constraints

implied by the production function [4.4] and the demand function [4.8], the firm’s profits are

Jt() =

{(
Pt()

Pt

)1−ε

− xt
(
Pt()

Pt

)−ε}
Ct, [4.9]

where the firm takes as given the general price level Pt, real aggregate demand Ct, and real marginal

cost xt (from [4.6]).
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At the beginning of time period t, a group of firms is randomly selected to have access to all

information available during period t when setting prices. For a firm  among this group, Pt() is

chosen to maximize the expression for profits Jt() in [4.9]. Since the profit function [4.9] is the

same across firms, all firms in this group will chose the same price, denoted by P̂t:

P̂t
Pt

=

(
ε

ε− 1

)
xt, [4.10]

where the term ε/(ε − 1) represents each firm’s markup of price on marginal cost. The remaining

group of firms must set a price in advance of period-t information being revealed (they have access

to all information available at the end of period t− 1, but they are not constrained to use the same

price as in the previous period). A firm  in this group chooses Pt() to maximize expected profits

Et−1Jt(). All firms in this group will choose the same nominal price P ′t that satisfies the first-order

condition:

Et−1

[(
P ′t
Pt
−
(

ε

ε− 1

)
xt

)(
P ′t
Pt

)−ε
Ct

]
= 0, assuming

P ′t
Pt
≥ xt, [4.11]

where the assumption is that the firm will be willing to satisfy whatever level of demand is forthcom-

ing at the preset price in all possible states of the world. Note that the profit-maximization problem

has no intertemporal dimension under the assumptions made. Let the parameter κ (0 < κ < ∞)

denote the number of firms in the group with predetermined prices relative to the group who set

price with full information.

4.3 Households

An individual born at time t has lifetime utility function [2.1], with the consumption levels Cy,t, Cm,t,

and Co,t now referring to consumption of the composite good [4.1]. Labour is supplied inelastically,

with the number of hours varying over the life cycle. Young, middle-aged, and old individuals

respectively supply αy, αm, and αo hours of labour. Individuals also derive income in their role of

owner-managers of firms, and it is assumed that the amount of income from this source also varies

over the life cycle in the same manner as labour income. Specifically, each young, middle-aged, and

old individual belongs respectively to the managerial teams of αy, αm, and αo firms. The total real

non-financial incomes of the generations alive at time t are:

Yy,t = αywt + αyJt, Ym,t = αmwt + αmJt, and Yo,t = αowt + αoJt, with Jt ≡
∫
[0,1]

Jt()d.

[4.12]

Individuals receive fixed fractions of total profits Jt because all variation in profits between different

firms is owing to the random selection of which firms receive access to full information when setting

their prices. The coefficients αy, αm, and αo are parameterized as in [2.4].

The assumptions on financial markets are the same as those considered in section 2. In the

benchmark case, there is only a one-period, risk-free, nominal bond as described in section 2.1. It

follows that the generational budget constraints are as given in [2.8], where consumption Ci,t and
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income Yi,t are reinterpreted according to [4.1] and [4.12]. The hypothetical case of complete markets

can also be considered as in section 2.2, where the generational budget constraints are as in [2.16],

with Ci,t and Yi,t reinterpreted as described above.

4.4 Equilibrium

The young, middle-aged, and old have per-person labour supplies Hy,t = αy, Hm,t = αm, and

Ho,t = αo. Total labour supply is Ht = (1/3)Hy,t + (1/3)Hm,t + (1/3)Ho,t, which is fixed at Ht = 1

given [2.3]. Equilibrium of the labour market therefore requires∫
[0,1]

Nt()d = 1. [4.13]

Goods market clearing requires that [4.7] holds for all  ∈ [0, 1], and by using [4.3], this is equivalent

to

Ct = Yt, where Yt ≡
∫
[0,1]

Pt()

Pt
Yt()d, [4.14]

with Yt denoting the real value of output summed over all firms. Using [4.5], [4.13], and [4.14], the

definition of total profits in [4.12] implies that Jt = Yt − wt. It follows from [4.12] that Yy,t = αyYt,

Ym,t = αm, and Yo,t = αoYt, as in equation [2.3].

Using the demand functions [4.7] for individual goods and the overall labour- and goods-market

equilibrium conditions [4.13] and [4.14]:

At =

∫
[0,1]

AtNt()d =

∫
[0,1]

Yt()d =

(∫
[0,1]

(
Pt()

Pt

)−ε)
Yt, [4.15]

which leads to the following aggregate production function:

Yt =
At
∆t

, where ∆t ≡

(∫
[0,1]

(
Pt()

Pt

)−ε
d

)−1
. [4.16]

The term ∆t represents the effects of misallocation due to relative-price distortions on aggregate

productivity.

Let p̂t ≡ P̂t/Pt denote the relative price of goods sold by the fraction 1/(1 + κ) of firms that

set a price with full information (the parameter κ is the ratio of the number of predetermined-price

firms to firms with full information), and p′t ≡ P ′t the relative price for the fraction κ/(1 + κ) of

firms whose price is predetermined. The formula for the price index Pt in [4.2] leads to

1

1 + κ
p̂1−εt +

κ

1 + κ
p′t

1−ε
= 1,

which implies that p̂t can be written as a function of p′t:

p̂t =
(

1− κ
(
p′t

1−ε − 1
)) 1

1−ε
. [4.17]
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Equation [4.10] implies that p̂t = (ε/(ε− 1))xt, hence by using [4.17], the equation [4.11] for setting

the predetermined price becomes:

Et−1

[(
p′t −

(
1− κ

(
p′t

1−ε − 1
)) 1

1−ε
)
p′t
−ε
Yt

]
= 0, assuming p′t ≥ (1−ε−1)

(
1− κ

(
p′t

1−ε − 1
)) 1

1−ε
.

[4.18a]

Aggregate output is determined by [4.16]:

Yt =
At
∆t

, [4.18b]

and by using [4.17]:

∆t =

(
κ

1 + κ
p′t
−ε

+
1

1 + κ

(
1− κ

(
p′t

1−ε − 1
))− ε

1−ε
)−1

. [4.18c]

Finally, note the following definitions:

p′t =
P ′t
Pt
, with P ′t = Et−1P

′
t , πt =

Pt − Pt−1
Pt−1

, and gt =
Yt − Yt−1
Yt−1

. [4.18d]

The equilibrium of the model is then given by the solution of equations [2.12], [2.14a]–[2.14b], and

[4.18a]–[4.18d], augmented with a monetary policy rule such as [2.6].

Before considering the equilibrium, consider the hypothetical case of fully flexible goods prices

(κ = 0). In this case, [4.18c] implies ∆̂t = 1, so equilibrium output with flexible prices is Ŷt = At,

which is simply equal to exogenous TFP. This is also the Pareto-efficient level of aggregate output.

4.5 Steady state and log linearization

In a non-stochastic steady state, [4.18a] implies p̄′ = 1, and [4.18c] implies ∆̄ = 1. Assuming that

the steady-state growth rate of At is zero then allows Proposition 1 to be applied to determined the

steady-state values of the other variables.

The new equations [4.18a]–[4.18d] of the sticky-price model can be log-linearized around this

steady state. The remaining equations [2.6], [2.12], [2.14a]–[2.14b] can be log linearized as before in

section 3.2.

The log-deviation of the misallocation term ∆t from [4.18c] is zero up to a first-order approxi-

mation (∆t = 0), so it follows that a first-order approximation of aggregate output is

Yt = At. [4.19]

Thus, aggregate output is equal to exogenous TFP up to a first-order approximation. Real GDP

growth is thus gt = At − At−1 up to a first-order approximation. For given values of gt, first-

order approximations to the solutions for all other variables can be obtained from the log-linearized

equations [3.1] and [3.2a]–[3.2b] using the results in Proposition 2. The hypothetical complete-
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markets outcome is found by using the results of Proposition 3.

4.6 Optimal monetary policy

With both incomplete financial markets and sticky goods prices, monetary policy has competing

objectives. Optimal monetary policy maximizes social welfare [2.22] using the only instrument

available to the central bank: control of the nominal interest rate. The Pareto-weights are those

that would support the only implementable Pareto-efficient allocation of consumption. Since the

weights derived in section 2.3 are conditional on a particular sequence of real GDP growth rates,

the growth rate of the Pareto-efficient (flexible price) level of aggregate output is used. It can then

be shown how a first-order approximation to the policy that maximizes this welfare function can

be found by minimizing a simple quadratic loss function subject to log-linear approximations of the

equations describing the economy.

Proposition 9 Let the Pareto weights ω̂i,t be those constructed according to equation [2.26] with

the assumed rate of GDP growth being ĝt = (Ŷt − Ŷt−1)/Ŷt−1, where Ŷt = At is the Pareto-

efficient level of aggregate output, and with r̂∗t and ĉ∗i,t being the complete-markets real return

and consumption-GDP ratios derived from [2.20a]–[2.20c] for real GDP growth of ĝt. The following

quadratic loss function is equal to the negative of the social welfare function Wt0 from [2.22] using

weights ω̂i,t up to a scaling, with terms independent of monetary policy and terms of third-order

and higher suppressed:

Lt0 =
∞∑
t=t0

βt−t0Et0

[
εκ

2
(πt − Et−1πt)2 +

γ2(β2 + (θ− β)θ)

3σ
d̃2t

]
. [4.20]

The variable d̃t = dt − d∗t is the ‘gap’ between the debt/GDP ratio with incomplete and complete

financial markets, where the ratio d∗t with complete markets is characterized in Proposition 3. The

coefficient θ is as defined in Proposition 2.

Proof See appendix A.5 �

The quadratic loss function [4.20] shows that just two variables capture all that needs to be

known about the economy’s deviation from Pareto efficiency. First, intratemporal misallocation of

resources owing to sticky prices is proportional to the square of the inflation surprise πt − Et−1πt.
Second, the loss from imperfect risk-sharing in incomplete financial markets is proportional to the

square of the debt/GDP ratio. This is analogous to the conventional loss functions seen in optimal

monetary policy analyses where there is inflation squared and the output gap squared, where the

output gap squared is proportional to the loss from output deviating from its Pareto efficient level.

Just as it is output gap fluctuations rather than output fluctuations that are costly in conventional

analyses, here it is fluctuations in the debt/GDP gap rather than fluctuations in debt/GDP per se

that are costly.

Optimal monetary policy minimizes the quadratic loss function using the nominal interest rate

it as the instrument, and subject to first-order approximations of the constraints involving the
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endogenous variables, inflation πt, and the debt/GDP gap d̃t. Using [3.1], [3.12], [3.14] there are

two constraints that apply to the three endogenous variables πt, d̃t, and it:

λd̃t = Etd̃t+1; [4.21a]

πt = it−1 + θd̃t + d̃t−1 − r∗t ; [4.21b]

where r∗t is determined exogenously using [3.13] and gt = At − At−1. The debt/GDP ratio is then

determined as dt = d∗t + d̃t, where d∗t is as given in [3.11].

Proposition 10 The optimal monetary policy minimizing the loss function [4.20] subject to the

constraints [4.21a]–[4.21b] is implemented by a weighted nominal income target

Nt ≡ (1 +$)Pt + Yt =
β

2
d∗t , where $ =

3σ(1− βλ2)θ2εκ
2γ2(β2 + (θ− β)θ)

, [4.22]

with the level of the target depending on the exogenous complete-markets debt/GDP d∗t given in

equation [3.11]. The price level is over-weighted in calculating the nominal income target.

Proof Setting up the Lagrangian for the problem of minimizing [4.20] subject to [4.21a] and [4.21b]:

Lt0 =
∞∑
t=t0

βt−t0Et0

[
εκ

2
(πt − Et−1πt)2 +

γ2(β2 + (θ− β)θ)

3σ
d̃2t

]

+
∞∑
t=t0

βt−t0Et0

[
kt
{
λd̃t − d̃t+1

}
+ it

{
it−1 + θd̃t + d̃t−1 − πt − r∗t

}]
,

where the (scaled) Lagrangian multipliers are denoted by kt and it. The first-order conditions with

respect to each of the endogenous variables πt, d̃t, and it are:

εκ(πt − Et−1πt)− it = 0; [4.23a]

2γ2(β2 + (θ− β)θ)

3σ
d̃t + λkt − β−1kt−1 + θit + βEtit+1 = 0; [4.23b]

Etit+1 = 0. [4.23c]

Taking the conditional expectation of equation [4.23b] at time t + 1, multiplying both sides by β

and using [4.23c] to eliminate terms in it:

kt = βλEtkt+1 +
2γ2(β2 + (θ− β)θ)

3σ
βEtd̃t+1.

Solving forwards using this equation and noting that [4.21a] implies Etd̃t+` = λ`d̃t:

kt =
2γ2(β2 + (θ− β)θ)

3σ
β

∞∑
`=1

(βλ)`−1Etd̃t+` =
2γ2(β2 + (θ− β)θ)

3σ

βλd̃t
1− βλ2

.
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The expression for kt in the equation above implies that:

2γ2(β2 + (θ− β)θ)

3σ
d̃t + λkt − β−1kt−1 =

2γ2(β2 + (θ− β)θ)

3σ(1− βλ2)
(d̃t − λd̃t−1).

Using the equation above and the formula for it that follows from [4.23a] and substituting this into

[4.23b] yields:
2γ2(β2 + (θ− β)θ)

3σ(1− βλ2)
(d̃t − Et−1d̃t) + εκθ(πt − Et−1πt) = 0,

where [4.23c] has again been used to eliminate Etit+1, and [4.21a] to replace λd̃t−1 by Et−1d̃t. This

equation can be solved for the unexpected component of the debt gap:

d̃t − Et−1d̃t = − 3σ(1− βλ2)θεκ
2γ2(β2 + (θ− β)θ)

(πt − Et−1πt).

Equation [4.21b] implies πt − Et−1πt = θ(d̃t − Et−1d̃t) − (r∗t − Et−1r∗t ), and by substituting the

equation above:

(1 +$)(πt − Et−1πt) + (r∗t − Et−1r∗t ) = 0, [4.24]

where $ is as defined in [4.22].

Now first-difference both sides of the weighted nominal income target [4.22] to obtain (1+$)πt+

gt = (β/2)(d∗t − d∗t−1). Equating the unexpected components of both sides of this equation yields:

(1 +$)(πt − Et−1πt) + (gt − Et−1gt) =
β

2
(d∗t − Et−1d∗t ). [4.25]

Comparison of [3.11] and [3.13] implies that r∗t − Et−1r∗t = (gt − Et−1gt) − (β/2)(d∗t − Et−1d∗t ).
Therefore, equation [4.25] is equivalent to [4.24], so the proposed weighted nominal income target

[4.22] implements the optimal monetary policy. �

5 Endogenous labour supply

In the analysis of section 4, neither monetary policy nor the incompleteness of markets had any first-

order effect on aggregate output. This section adds an endogenous labour supply decision, which will

imply that both monetary policy and the incompleteness of financial markets have consequences for

aggregate output. The analysis will further demonstrate that the desire to stabilize the debt/GDP

ratio with nominal income targeting is present even if the policymaker does not care about risk

sharing.
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5.1 Households

The population and age structure of households is the same as that described in section 2, but the

lifetime utility function of individuals born at time t is now

Ut =

{
logCy,t −

Hη
y,t

ηαη−1y

}
+ βEt

{
logCm,t+1 −

Hη
m,t+1

ηαη−1m

}
+ β2Et

{
logCo,t+2 −

Hη
o,t+2

ηαη−1o

}
, [5.1]

where Hy,t, Hm,t, and Ho,t are respectively the per-person hours of labour supplied by young, middle-

aged, and old individuals at time t. The utility function is additively separable between consumption

and hours, and utility is logarithmic in consumption (an intertemporal elasticity of substitution

σ of unity), with the composite consumption good being [4.1], as in section 4. The parameter

η (1 < η < ∞) is related to the Frisch elasticity of labour supply, the Frisch elasticity being

(η− 1)−1. The parameters αy, αm, and αo, which in section 2 specified the shares of the exogenous

income endowment received by each generation, are now interpreted as age-specific differences in

the disutility of working. A higher value of αi indicates that generation i ∈ {y,m, o} has a relatively

low disutility of labour.

Hours of labour supplied by individuals of different ages are not perfect substitutes, so wages

are age specific. Let wy,t, wm,t, and wo,t denote the hourly (real) wages of the young, middle-aged,

and old, respectively. As in section 4, individuals earn remuneration as owner-managers of firms.

Managerial labour is assumed to have no disutility and is supplied inelastically, with αy, αm, and

αo denoting the per-person proportions of total profits Jt received by individuals of each generation.

Individuals are also subject to age-specific lump-sum taxes Ty,t, Tm,t, and To,t. The per-person real

non-financial incomes of individuals from different generations are:

Yy,t = wy,tHy,t+αyJt−Ty,t, Ym,t = wm,tHm,t+αmJt−Tm,t, and Yo,t = wy,tHy,t+αyJt−Ty,t, [5.2]

where total profits Jt are as defined in [4.12].

Given additive separability of the utility function between consumption and hours, the consump-

tion Euler equations for each generation are the same (after setting σ = 1) as those in [2.9] in the

case of incomplete markets, and [2.17] in the hypothetical case of complete markets. Irrespective

of the assumptions on financial markets, the optimality conditions for maximizing utility [5.1] with

respect to labour supply Hi,t subject to [5.2] and the appropriate budget constraint are:

Cy,t

(
Hy,t

αy

)η−1
= wy,t, Cm,t

(
Hm,t

αm

)η−1
= wm,t, and Co,t

(
Ho,t

αo

)η−1
= wo,t. [5.3]

5.2 Firms

There is a range of differentiated goods and monopolistically competitive firms as in the model of

section 4. The production function is [4.4], but now the labour Nt() used by firm  is reinterpreted

as a composite labour input drawing on hours of labour from young, middle-aged, and old workers.
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The labour aggregator is assumed to have the Cobb-Douglas form:

Nt() ≡
Ny,t()

αy
3 Nm,t()

αm
3 No,t()

αo
3

3α
αy
3

y α
αm
3

m α
αo
3
o

, [5.4]

where Ni,t() is the firm’s employment of hours of labour by individuals of age i ∈ {y,m, o}, and αy,

αm, and αo are the same parameters that appear in [5.1]. The Cobb-Douglas form of [5.4] implies

an elasticity of substitution between different labour inputs of one.

The firm takes the real wages wy,t, wm,t, and wo,t in each age-specific labour market as given.

Firms are assumed to receive a proportional wage-bill subsidy of τ from the government. Irrespective

of whether or not firms set prices with full information, firms choose labour inputs Ni,t() to minimize

the total cost of obtaining the number of units Nt() of composite labour that enter the production

function [4.4] subject to the aggregator [5.4]. Conditional on Nt(), the cost-minimizing labour

demand functions are:

Ny,t() =
αywt

3(1− τ)wy,t

Nt(), Nm,t() =
αmwt

3(1− τ)wm,t

Nt(), and No,t() =
αowt

3(1− τ)wo,t

Nt(),

[5.5]

where wt is the minimized value of (post-subsidy) wage costs per unit of composite labour:

wt = (1− τ)w
αy
3

y,tw
αm
3

m,tw
αo
3

o,t , and where (1− τ) (wy,tNy,t() + wm,tNm,t() + wo,tNo,t()) = wtNt().

[5.6]

All the equations in section 4.2 continue to hold with wt as given in [5.6], so firms can be analysed

as if they were directly hiring units of composite labour at real wage wt for use in the production

function [4.4].

5.3 Government

The only role of government in the model is to raise lump-sum taxes to fund the wage-bill subsidy

paid to firms. The government does not spend, borrow, or save. The total cost of the wage-bill

subsidy is:

Tt = τ

∫
[0,1]

(wy,tNy,t() + wm,tNm,t() + wo,tNo,t()) d. [5.7]

The subsidy is set so that τ = 1/ε, where ε is the elasticity of substitution between different goods

in [4.1] (this implies a well-defined subsidy because ε > 1). The government distributes the tax

burden so that the per-person age-specific tax levels are:

Ty,t = αyTt, Tm,t = αmTt, and To,t = αoTt, [5.8]

where αy, αm, and αo are the same parameters as in [5.1] and [5.4].
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5.4 Equilibrium

There is a separate market-clearing condition for each age-specific labour market:∫
[0,1]

Ni,t()d =
1

3
Hi,t for each i ∈ {y,m, o}. [5.9]

Following the same steps as in [4.15] using [4.4] and [4.7] leads to the aggregate production function

Yt =
AtNt

∆t

, with Nt ≡
∫
[0,1]

Nt()d, [5.10]

where Nt denotes the aggregate usage of units of composite labour, and ∆t is the measure of

relative-price distortions defined in [4.16].

Using the cost-minimizing labour demand functions [5.5], the market clearing condition [5.9],

and the definition of aggregate demand Nt for units of composite labour:

wi,tHi,t = αi

(
wtNt

1− τ

)
for each i ∈ {y,m, o}. [5.11]

Using [4.5], [4.14], [4.12], and [5.10], total profits are given by Jt = Yt−wtNt. Using [5.6], [5.7], and

[5.10], total taxes are Tt = (τ/(1−τ))wtNt. With [5.8], age-specific non-financial incomes from [5.2]

are Yi,t = wi,tHi,t + αi(Jt − Tt) for each i. Together with the expressions for Jt and Tt, equation

[5.11] implies that Yi,t = αiYt, thus that the age-shares of total GDP are constant.

Substituting [5.11] into the labour supply first-order condition [5.3] implies that the age-specific

real wages wi,t satisfy:

wi,t = ci,tYt

(
wtNt

(1− τ)wi,t

)η−1
for each i ∈ {y,m, o}, [5.12]

where ci,t ≡ Ci,t/Yt. Then using the formula [5.6] for the minimum cost wt of a unit of composite

labour and the size of the wage-bill subsidy τ = ε−1 yields:

wt = (1− ε−1)
(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)
Nη−1
t Yt.

Substituting this into equation [4.6] for real marginal cost xt and using [5.10] to replace Nt:

xt = (1− ε−1)
(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)
∆η−1
t

(
Yt
At

)η
. [5.13]

Since [4.10] implies (1− ε−1)p̂t = xt, combining [4.17] and [5.13] implies:

(
1− κ

(
p′t

1−ε − 1
)) 1

1−ε
=
(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)
∆η−1
t

(
Yt
At

)η
. [5.14]

With incomplete markets, the equilibrium is determined by equations [2.12], [2.14a]–[2.14b],

[4.18a], [4.18c], [4.18d], [5.14], augmented with a monetary policy rule such as [2.6].
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5.5 Steady state and log linearization

Equation [4.18a] implies p̄′ = 1, and [4.18c] implies ∆̄ = 1 as in section 4. If the steady-state growth

rate of At is zero as assumed then from [5.14] the only possible steady-state growth rate of Yt must

also be zero. Given this, Proposition 1 demonstrates that c̄y = c̄m = c̄o = 1, which is consistent

with equation [5.14].

The log-linearization of equations [2.12], [2.14a]–[2.14b], [4.18c], and [4.18d] are as in section 3.2

and section 4. With logarithmic utility in consumption (σ = 1), Proposition 3 implies that d∗t = 0

and r∗t = gt, and hence that d̃t = dt.

Equation [4.18a] for the predetermined price becomes Et−1p
′
t = 0 when log linearized. With

p′t = P′t − Pt and P′t = Et−1P
′
t, and πt = Pt − Pt−1 from [4.18d], this implies P′t = Et−1Pt and

p′t = −(Pt − Et−1Pt), hence:

p′t = −(πt − Et−1πt). [5.15]

The log linearization of equation [5.14] is

−κp′t = η(Yt − At) +
(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)
, [5.16]

noting that ∆t = 0 up to a first-order approximation.

In the hypothetical case of complete markets with σ = 1, equation [3.10a] implies c∗y,t = c∗m,t =

c∗o,t = 0 using d∗t = 0 and r∗t = gt. Thus, equation [5.16] implies the Pareto-efficient level of aggregate

output Ŷ∗t that prevails with both complete financial markets and fully flexible prices (κ = 0) is

Ŷ∗t = At. Letting Ỹt ≡ Yt− Ŷ∗t denote the output gap, the combination of equations [5.15] and [5.16]

implies

κ(πt − Et−1πt) = ηỸt +
(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)
. [5.17]

With d̃t = dt, r
∗
t = Yt − Yt−1, and the definition of the output gap Ỹt ≡ Yt − Ŷ∗t , equation [3.14]

with [3.1] implies:

πt = it−1 + θdt + dt−1 − Ỹt + Ỹt−1 − (Ŷ∗t − Ŷ∗t−1). [5.18]

Finally, note that with cy,t = c̃y,t, cm,t = c̃m,t, and co,t = c̃o,t, equation [3.15] implies:

αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t = ξdt, where ξ =

γ2

3
((2 + β)θ− (1 + 2β)β) , [5.19]

using the parameterization of αy, αm, and αo in [2.4]. Therefore, the constraints faced by the

policymaker are given by [3.12] with dt = d̃t, equation [5.18] with r̂∗t = ĝ∗t = Ŷ∗t − Ŷ∗t−1 denoting the

hypothetical flexible-price complete-markets real return, and the combination of equations [5.17]

and [5.19]:

λdt = Etdt+1; [5.20a]

πt = it−1 + θdt + dt−1 − Ỹt + Ỹt−1 − r̂∗t ; [5.20b]

κ(πt − Et−1πt) = ηỸt + ξdt. [5.20c]
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There are four endogenous variables: inflation πt, the debt/GDP ratio dt, the output gap Ỹt, and

the nominal interest rate it; and one exogenous variable r̂∗t = At − At−1, which depends only on the

growth rate of exogenous TFP At.

5.6 Optimal monetary policy

Optimal monetary policy maximizes the social welfare function:

Wt0 = Et0

[
1

3

∞∑
t=t0−2

Ut

]
. [5.21]

This is the social welfare function in [2.22] with constant weights, which is appropriate for the case

of σ = 1 given the results of Proposition 3.

Proposition 11 The social welfare function [5.21] can be approximated by the loss function:

Lt0 =
∞∑
t=t0

βt−t0Et0

[εκ
2

(πt − Et−1πt)2 +
η

2
Ỹ2
t +

χ

2
d2t

]
, [5.22]

where the weight χ on the debt/GDP ratio is:

χ =
γ2

3

(
2

(
1 +

1

η

)(
(θ− β)θ+ β2

)
+
βγ

η

(
θ2 − 2(1 + β)θ+ β

)
− γ

2

3η
((2 + β)θ− (1 + 2β)β)2

)
.

[5.23]

Optimal monetary policy is a weighted nominal income target:

Nt ≡ (1 +$)Pt + Yt, where $ =
κθ
(
θ
(
ε+ κ

η

)
+ (ε− 1)ξ

η

)
(
χ+ ξ2

η

)(
1 +

(
1 + κ

η

)(
βλ2

1−βλ2

))
+ κ

η
(χ− ξθ)

. [5.24]

Proof See appendix A.6 �

6 Conclusions

This paper has shown how a monetary policy of nominal GDP targeting facilitates risk sharing in

incomplete financial markets where contracts are denominated in terms of money. In an environment

where risk derives from uncertainty about future real GDP, strict inflation targeting would lead to

a very uneven distribution of risk, with leveraged borrowers’ consumption highly exposed to any

unexpected change in their incomes when monetary policy prevents any adjustment of the real value

of their liabilities. This concentration of risk implies that volumes of credit, long-term real interest

rates, and asset prices would be excessively volatile. Strict inflation targeting does provide savers

with a risk-free real return, but fundamentally, the economy lacks any technology that delivers
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risk-free real returns, so the safety of savers’ portfolios is simply the flip-side of borrowers’ leverage

and high levels of risk. Absent any changes in the physical investment technology available to the

economy, risk cannot be annihilated, only redistributed.

That leaves the question of whether the distribution of risk is efficient. The combination of

incomplete markets and strict inflation targeting implies a particularly inefficient distribution of risk.

If complete financial markets were available, borrowers would issue state-contingent debt where the

contractual repayment is lower in a recession and higher in a boom. These securities would resemble

equity shares in GDP, and they would have the effect of reducing the leverage of borrowers and hence

distributing risk more evenly. In the absence of such financial markets, in particular because of the

inability of individuals to short-sell such securities, a monetary policy of nominal GDP targeting can

effectively complete the market even when only non-contingent nominal debt is available. Nominal

GDP targeting operates by stabilizing the debt-to-GDP ratio. With financial contracts specifying

liabilities fixed in terms of money, a policy that stabilizes the monetary value of real incomes ensures

that borrowers are not forced to bear too much of the aggregate risk, converting nominal debt into

real equity.

While the model is far too simple to apply to the recent financial crises and deep recessions

experienced by a number of economies, one policy implication does resonate with the predicament of

several economies faced with high levels of debt combined with stagnant or falling GDPs. Nominal

GDP targeting is equivalent to a countercyclical price level, so the model suggests that higher

inflation can be optimal in recessions. In other words, while each of the ‘stagnation’ and ‘inflation’

that make up the word ‘stagflation’ is bad in itself, if stagnation cannot immediately be remedied,

some inflation might be a good idea to compensate for the inefficiency of incomplete financial

markets. And even if policymakers were reluctant to abandon inflation targeting, the model does

suggest that they have the strongest incentives to avoid deflation during recessions (a procyclical

price level). Deflation would raise the real value of debt, which combined with falling real incomes

would be the very opposite of the risk sharing stressed in this paper, and even worse than an

unchanging inflation rate.

It is important to stress that the policy implications of the model in recessions are matched by

equal and opposite prescriptions during an expansion. Thus, it is not just that optimal monetary

policy tolerates higher inflation in a recession — it also requires lower inflation or even deflation

during a period of high growth. Pursuing higher inflation in recessions without following a symmetric

policy during an expansion is both inefficient and jeopardizes an environment of low inflation on

average. Therefore the model also argues that more should be done by central banks to ‘take away

the punch bowl’ during a boom even were inflation to be stable.
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A Technical appendix

A.1 Proof of Proposition 1

In the non-stochastic steady state, real GDP growth is zero: ḡ = 0. The steady-state budget constraints
with incomplete markets follow immediately from [2.14a] with the specification of the lifecycle income
profile [2.4]:

c̄y = (1− βγ) + d̄, c̄m + d̄ = (1 + (1 + β)γ)− (1 + r̄)d̄, and c̄o = (1− γ) + (1 + r̄)d̄. [A.1.1a]

Using the definition of β in [2.1], the Euler equations [2.14b] in steady state become:

c̄m =

(
1 + r̄

1 + %

)σ
c̄y, and c̄o =

(
1 + r̄

1 + %

)σ
c̄m, [A.1.1b]

where % is the rate of time preference. The steady-state goods market clearing condition [2.5] is

1

3
c̄y +

1

3
c̄m +

1

3
c̄o = 1. [A.1.1c]

The steady-state Fisher equation [3.6] is:

1 + r̄ =
1 + ī

1 + π̄
, [A.1.1d]

and the monetary policy rule [2.6] is:
1 + ī = ψ0(1 + π̄)ψπ . [A.1.1e]
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In the case of complete markets, the steady-state versions of [2.20a] and [2.20b] are the same as [A.1.1a]–
[A.1.1b], and any solution satisfying [A.1.1b] is consistent with [2.20c] in steady state. Thus, the set of
non-stochastic steady states is the same whether or not markets are complete, hence d̄ = d̄∗ and r̄ = r̄∗,
and so on, in what follows.

The system of equations [A.1.1a]–[A.1.1c] is block recursive in the real variables c̄y, c̄m, c̄o, r̄, and d̄, with
one equation being redundant. Thus, the steady-state for real variables is invariant to monetary policy.

The budget constraints of the young and old in [A.1.1a] can be used to obtain and equation in c̄y and
c̄o, eliminating d̄:

(1 + r̄) (c̄y − (1− βγ)) = (1 + r̄)d̄ = (c̄o − (1− γ)), [A.1.2]

and then dividing both sides by (1 + %):(
1 + r̄

1 + %

)
(c̄y − (1− βγ)) = β(c̄o − (1− γ)). [A.1.3]

Now define a variable z as follows

z ≡
(

1 + r̄

1 + %

)σ
, noting that c̄m = zc̄y, c̄o = zc̄m, and c̄o = z2c̄y, [A.1.4]

using the Euler equations in [A.1.1b]. With economically meaningful r̄ in the range −1 < r̄ < ∞ and the
parameters satisfying 0 < % <∞ and σ > 0, the range of economically meaningful z values is 0 < z <∞.

Substituting the equations from [A.1.4] into the goods market clearing condition [A.1.1c] yields expres-
sions for age-specific consumption in terms of z:

c̄y =
3

1 + z + z2
, c̄m =

3z

1 + z + z2
, and c̄o =

3z2

1 + z + z2
. [A.1.5]

Substituting the expressions from [A.1.5] into [A.1.3] and using the definition of z to replace the term
(1 + r̄)/(1 + %): (

3

1 + z + z2
− (1− βγ)

)
z

1
σ = β

(
3z2

1 + z + z2
− (1− γ)

)
.

Multiplying both sides by −(1 + z + z2) yields an equivalent equation:(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ = β

(
(1− γ)(1 + z + z2)− 3z2

)
. [A.1.6]

Define the function F (z) as follows:

F (z) ≡
(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ + β

(
3z2 − (1− γ)(1 + z + z2)

)
. [A.1.7]

Comparison with [A.1.6] shows that a necessary and sufficient condition for a steady state is the equation
F (z) = 0, with the implied value of r̄ found using [A.1.4], the values of c̄y, c̄m, and c̄o found using [A.1.5],
and d̄ from [A.1.2]. Note that the function F (z) is continuous and differentiable for all z ∈ (0,∞).

(i) A steady state always exists. Using [A.1.7]

F (1) = 3((1− βγ)− 1) + 3β(1− (1− γ)) = 0,

hence z = 1 is a steady state. The definition of z in [A.1.4] implies r̄ = % since σ > 0. From [A.1.5] it
follows that c̄y = c̄m = c̄o = 1. Finally, [A.1.2] implies d̄ = γ/(1 + r̄). Since r̄ = % and β = 1/(1 + %), this
means that d̄ = βγ.

(ii) There are both necessary and sufficient conditions to consider.

Necessary conditions
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Using [A.1.7], observe that

F (0) = −β(1− γ) < 0, and lim
z→∞

F (z) =∞, [A.1.8]

where the latter statement follows because the highest power of z in [A.1.7] has coefficient (1−βγ), which
is positive. Now note that the derivative of F (z) from [A.1.7] is

F ′(z) = (1− βγ)(1 + 2z)z
1
σ +

1

σ

(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ
−1 + β (6z − (1− γ)(1 + 2z)) . [A.1.9]

Evaluating this derivative at z = 1:

F ′(1) = 3(1− βγ) +
3

σ
((1− βγ)− 1) + 3β (2− (1− γ)) = 3

(
1− βγ− βγ

σ
+ β+ βγ

)
= 3(1 + β)

(
1− β

1 + β

γ

σ

)
.

[A.1.10]

Using the definition of β from [2.1], the necessary condition stated in the proposition is

γ

σ
<

1 + β

β
. [A.1.11]

If γ/σ > (1 +β)/β then [A.1.10] implies that F ′(1) < 0. Since F (1) = 0, this means that F (z) is strictly
positive in a neighbourhood below z = 1, and strictly negative in a neighbourhood above z = 1. Given the
findings in [A.1.8] and the continuity of F (z), it follows that F (z) = 0 has solutions in the economically
meaningful ranges (0, 1) and (1,∞). The steady state z = 1 would not then be unique.

To analyse the case γ/σ = (1 + β)/β, use [A.1.9] to obtain the second derivative of F (z):

F ′′(z) = 2(1− βγ)z
1
σ +

1

σ
(1− βγ)(1 + 2z)z

1
σ
−1 +

1

σ
(1− βγ)(1 + 2z)z

1
σ
−1

+
1

σ

(
1

σ
− 1

)(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ
−2 + β (6− 2(1− γ)) .

[A.1.12]

Evaluate this derivative at z = 1:

F ′′(1) = 2(1− βγ) +
3

σ
(1− βγ) +

3

σ
(1− βγ)− 3βγ

σ

(
1

σ
− 1

)
+ 2β(2 + γ)

= 2(1 + 2β) +
6

σ
(1− βγ)− 3βγ

σ

(
1

σ
− 1

)
.

[A.1.13]

Note that when γ/σ = (1 + β)/β:
1

σ
=

1 + β

βγ
,

which can be substituted into [A.1.13] to obtain:

F ′′(1) =
1

βγ
(2βγ(1 + 2β) + 6(1 + β)(1− βγ)− 3(1 + β)((1 + β)− βγ))

=
1

βγ
(2βγ(1 + 2β) + 3(1 + β)(1− β− βγ)) =

1− β
βγ

(3(1 + β)− βγ) .

[A.1.14]

Therefore, from [A.1.10] and [A.1.14], when γ/σ = (1 +β)/β it follows that F ′(1) = 0 and F ′′(1) > 0, the
latter by noting 0 < β < 1 and 0 < γ < 1. Since F (1) = 0, it must be the case that F (z) is positive in a
neighbourhood below z = 1. Combined with [A.1.8], this means that there exists a solution of F (z) = 0
in the economically meaningful range (0, 1), demonstrating that the steady state z = 1 is not unique.
Therefore, if [A.1.11] does not hold then there exist multiple steady states.
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Sufficient conditions

Let F(z;σ) denote the function F (z) from [A.1.7] with the dependence on the parameter σ made explicit.
This can be written as:

F(z;σ) ≡ (1− βγ)(1 + z + z2)z
1
σ − 3z

1
σ + 3βz2 − β(1− γ)(1 + z + z2). [A.1.15]

First, consider the limiting case of σ→∞. For any z > 0, [A.1.15] reduces to:

F(z;∞) = (1− βγ)(1 + z + z2)− 3 + 3βz2 − β(1− γ)(1 + z + z2) = (1 + 2β)z2 + (1− β)z − (2 + β).

This is a quadratic equation in z. Given that 0 < β < 1, the coefficients of powers of z in the polynomial
change sign exactly once. Hence, by Leibniz’s rule of signs, the equation has at most one positive root.
This shows that z = 1 is the unique positive solution of the equation F(z;∞) = 0. Furthermore, observe
from [A.1.15] that F(0;σ) = −β(1− γ), so there cannot be a root at z = 0 even when σ→∞.

Next, consider the special case of σ = 1, in which case [A.1.15] reduces to:

F(z; 1) = (1−βγ)(1+z+z2)z−3z+3βz2−β(1−γ)(1+z+z2) = (1−βγ)z3+(1+2β)z2−(2+β)z−β(1−γ).

This is a cubic equation in z. Given that 0 < β < 1 and 0 < γ < 1, the coefficients of powers of z change
sign exactly once. Hence, by Leibniz’s rule of signs, the equation F(z; 1) = 0 can have no more than one
positive root. This establishes that z = 1 is the unique positive solution of the equation.

Finally, consider one more special case, namely σ = 1/2. From [A.1.15]:

F(z; 1/2) = (1− βγ)(1 + z + z2)z2 − 3z2 + 3βz2 − β(1− γ)(1 + z + z2)

= (1− βγ)z4 + (1− βγ)z3 − 2(1− β)z2 − β(1− γ)z − β(1− γ).

This is a quartic equation in z. Given that 0 < β < 1 and 0 < γ < 1, the coefficients of powers of z change
sign exactly once. Hence, by Leibniz’s rule of signs, the equation has at most one positive root, proving
that z = 1 is the unique positive solution.

To analyse a general value of σ, define the function H(z) as follows:

H(z) ≡ (1− βγ)(1 + z + z2)− 3. [A.1.16]

Since 0 < β < 1 and 0 < γ < 1, the function H(z) is strictly increasing in z for all z ≥ 0. Given that
H(0) = −(2 + βγ) < 0, it follows H(z) = 0 has a unique strictly positive root, denoted by z. Since
H(1) = −3βγ < 0, it must be that z > 1. The function H (z) is negative for z < z and positive for z > z.
Using [A.1.15], F(z;σ) can be written in terms of H(z) as follows:

F(z;σ) = z
1
σH(z) + β

(
3z2 − (1− γ)(1 + z + z2)

)
. [A.1.17]

Now use [A.1.17] to take the derivative of F(z;σ) with respect to σ, holding z constant:

∂F(z;σ)

∂σ
= − 1

σ2
(log z)z

1
σH(z). [A.1.18]

If z ∈ (0, 1) then log z < 0, while H(z) < 0 since z > 1. It follows that F(z;σ) is decreasing in σ in this
range of z values. If z ∈ (1, z) then H(z) is still negative, while log z > 0, so F(z;σ) is strictly increasing
in σ. Finally, if z ∈ (z,∞), H(z) > 0 and log z > 0 since z > 1, so F(z;σ) is strictly decreasing in σ for
these z values. It follows for any value of σ in the range 1/2 ≤ σ ≤ ∞ that F(z;σ) lies somewhere between
the values of F(z; 1/2) and F(z;∞). Formally, for all 0 ≤ z ≤ ∞:

min{F(z; 1/2),F(z;∞)} ≤ F(z;σ) ≤ max{F(z; 1/2),F(z;∞)}. [A.1.19]

Now suppose the equation F(z;σ) = 0 were to have a root z 6= 1. Given the bounds in [A.1.19] and the
continuity of F(z;σ) for all σ, this is not possible unless either F(z; 1/2) or F(z;∞) also has a root z 6= 1,
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but not necessarily the same one as F(z;σ). As this has already been ruled out, it is therefore shown that
z = 1 is the only positive root of F (z) = 0 for any σ satisfying 1/2 ≤ σ <∞.

(iii) Having determined the steady-state values of the real variables, the nominal variables must satisfy
[A.1.1d]–[A.1.1e]. Substituting [A.1.1e] into [A.1.1d] and using the earlier result r̄ = %:

(1 + π̄)ψπ−1 =
1 + %

ψ0
.

This has a unique solution for inflation whenever ψπ 6= 1:

π̄ =

(
1 + %

ψ0

) 1
ψπ−1

− 1,

which then determines the nominal interest rate using [A.1.1d]:

ī = (1 + %)(1 + π̄)− 1.

This completes the proof.

A.2 Lemmas

Lemma 1 Let G (z) be the following quadratic equation:

G (z) ≡ β
(

1− γ
σ

)
z2 +

(
2(1 + β)− βγ

σ

)
z +

(
1− βγ

σ

)
. [A.2.1]

Assume the parameters are such that 0 < β < 1, 0 < γ < 1, σ > 0. If the following condition is satisfied:

γ

σ
<

1 + β

β
, [A.2.2]

then G (z) can be factorized uniquely as

G (z) = δz(1− λz−1)(1− ζz), [A.2.3]

in terms of the roots λ and ζ−1 of G (z) = 0 and a non-zero coefficient δ. These are given by the following
formulas:

λ =

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
− (1 + 2β)−

(
1− βγ

σ

)
2β
(
1− γ

σ

)
=

−2
(

1− βγ
σ

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.2.4a]

ζ =
−2β

(
1− γ

σ

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.2.4b]

δ =
1

2

(1 + 2β) +

(
1− βγ

σ

)
+

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
) . [A.2.4c]

The roots λ and ζ−1 are such that |λ| < 1 and |ζ| < 1, and the coefficient δ satisfies 0 < δ < 2(1 + β).
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Proof Evaluate the quadratic G (z) in [A.2.1] at z = −1 and z = 1:

G (−1) = −
(

1 + β
(

1 +
γ

σ

))
< 0, and G (1) = 3

(
(1 + β)− βγ

σ

)
.

Given that condition [A.2.2] is assumed to hold, it follows that G (1) > 0, and hence that G (z) changes sign
over the interval [−1, 1]. Thus, by continuity, G (z) = 0 always has a root in the interval (−1, 1). Let this
root be denoted by λ, which must satisfy |λ| < 1.

Since [A.2.1] holds, it must be the case that

2(1 + β) >
βγ

σ
,

and thus that the coefficient of z in [A.2.1] is never zero. The coefficient of z2 can be zero, though, so G (z)
is either quadratic or purely linear. This means that either G (z) has only one root or has two distinct roots.
As one root is known to be real, complex roots are not possible. Given that G (z) is at most quadratic and
has a sign change on [−1, 1], there can be no more than one root in this interval. A second root, if it exists,
lies in either (−∞,−1) or (1,∞). If there is a second root, let ζ denote the reciprocal of this root. If there
is no second root, let ζ = 0. In either case, ζ is a real number satisfying |ζ| < 1.

When ζ = 0, the function given in [A.2.3] is linear with single root at z = λ. When ζ 6= 0, [A.2.3] is a
quadratic function with roots z = λ and z = ζ−1. Therefore, the factorization [A.2.3] must hold for some
non-zero coefficient δ.

Take the case of γ < σ first. This means the coefficient of z2 in [A.2.1] is positive, so the quadratic
is u-shaped. Given that G (−1) < 0, it follows that the second root ζ−1 is found in (−∞,−1), that is, to
the left of λ. Now consider the case of γ > σ, where the coefficient of z2 in G (z) is negative, and G (z) is
n-shaped. With G (1) > 0 this means that the second root ζ−1 is found in (1,∞), lying to the right of λ.
In applying the quadratic root formula to find λ, observe that the denominator of the formula is positive
in the case where γ < σ (with ζ−1 < λ) and negative when γ > σ (with λ < ζ−1). Therefore, the root λ is
always associated with the upper branch of the quadratic root function:

λ =
−
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

)
2β
(
1− γ

σ

) . [A.2.5]

Since λ is known to be a real number, the term inside the square root must be non-negative.
When a second root exists, ζ−1 is given by the lower branch of the quadratic root function, and hence

an expression for ζ is:

ζ =
−2β

(
1− γ

σ

)
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

) . [A.2.6]

Using [A.2.1], the formula for the product λζ−1 of the roots of G (z) = 0 implies:

λ =

(
1− βγ

σ

)
β
(
1− γ

σ

)ζ. [A.2.7]

Substituting for ζ from [A.2.6] provides an alternative expression for λ:

λ =
−2
(

1− βγ
σ

)
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

) . [A.2.8]

Given that condition [A.2.2] holds and that the term in the square root is positive, [A.2.8] provides a
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well-defined formula for λ in all cases, including γ = σ. Similarly, it can be seen from [A.2.6] that ζ = 0 if
and only if γ = σ, which given the definition [A.2.1] is equivalent to G (z) being purely linear. Therefore,
formulas [A.2.6] and [A.2.8] are well defined for all configurations of γ and σ consistent with [A.2.2].

Multiplying out the terms in the factorization [A.2.3] yields:

G (z) = −δζz2 + δ(1 + λζ)z − δλ.

Equating the constant term with that in [A.2.1] implies −δλ = (1 − βγ/σ), which leads to the following
expression for δ:

δ =
−
(

1− βγ
σ

)
λ

.

Substituting for λ from [A.2.8] shows that δ is given by:

δ =
1

2

(2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2

− 4β
(

1− γ
σ

)(
1− βγ

σ

) . [A.2.9]

Given [A.2.2] holds and the term in the square root is positive, it follows that δ is strictly positive. Observe
that the term in the square root can be simplified as follows:

(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

)(
1− βγ

σ

)
= (1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)
. [A.2.10]

It follows that the term inside the square root is never more than (1 + 2β)2 + 3, and since (1 + 2β)2 + 3 ≤
(2(1 + β))2, it can be seen from [A.2.9] that δ ≤ 2(1 + β).

Finally, substituting [A.2.10] into [A.2.5], [A.2.8], [A.2.6], and [A.2.9] yield the formulas in [A.2.4a]–
[A.2.4c]. This completes the proof. �

A.3 Proof of Proposition 2

In what follows, it is helpful to define a new variable et in terms of rt and gt:

et ≡ rt − gt. [A.3.1]

The system of equations [3.2a]–[3.2b] under incomplete markets can then be written in terms of the variables
dt, et, cy,t, cm,t, co,t:

cy,t = βγdt, [A.3.2a]

cm,t = −βγdt − γ(et + dt−1), [A.3.2b]

co,t = γ(et + dt−1), [A.3.2c]

cy,t = Etcm,t+1 − σEtet+1 + (1− σ)Etgt+1, [A.3.2d]

cm,t = Etco,t+1 − σEtet+1 + (1− σ)Etgt+1. [A.3.2e]

This is a system of five equations in five unknowns if real GDP growth gt is taken as given. However, given
the presence of expectations of the future, this will not suffice to determine a unique solution in general.
Nonetheless, it will be possible to characterize the set of possible equilibria for the debt ratio dt up to a
martingale difference.

(i) First, substitute the budget identities [A.3.2a] and [A.3.2b] for the young and middle-aged into the
Euler equation [A.3.2d] for the young:

βγdt = Et[−βγdt+1 − γ(et+1 + dt)]− σEtet+1 + (1− σ)Etgt+1.
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This can be rearranged to obtain an expression for Etet+1:

(γ+ σ)Etet+1 = −γ(1 + β)dt − βγEtdt+1 + (1− σ)Etgt+1. [A.3.3]

Next, combine the Euler equations [A.3.2d] and [A.3.2e] for both the young and the middle-aged:

cy,t = Et[Et+1co,t+2 − σEt+1et+2 + (1− σ)Et+1gt+2]− σEtet+1 + (1− σ)Etgt+1,

which simplifies to:
cy,t = Etco,t+2 − σEt[et+1 + et+2] + (1− σ)Et[gt+1 + gt+2].

Then substitute the budget identities [A.3.2a] and [A.3.2c] for the young and old into this equation:

βγdt = Et[γ(et+2 + dt+1)]− σEt[et+1 + et+2] + (1− σ)Et[gt+1 + gt+2],

and rearrange this collect the terms in Etet+1 and Etet+2 on the left-hand side:

(σ− γ)Etet+2 + σEtet+1 = −βγdt + γEtdt+1 + (1− σ)Et[gt+1 + gt+2]. [A.3.4]

Multiply both sides of the equation [A.3.4] by the positive coefficient (γ + σ) and apply the law of
iterated expectations to write:

(σ−γ)Et [(γ+ σ)Et+1et+2]+σ ((γ+ σ)Etet+1) = −βγ(γ+σ)dt+γ(γ+σ)Etdt+1+(1−σ)(γ+σ)Et[gt+1+gt+2].

Now substitute the expression for (γ+ σ)Etet+1 from [A.3.3] into the above equation:

(σ− γ)Et [−γ(1 + β)dt+1 − βγEt+1dt+2 + (1− σ)Et+1gt+2] + σ (−γ(1 + β)dt − βγEtdt+1 + (1− σ)Etgt+1)

= −βγ(γ+ σ)dt + γ(γ+ σ)Etdt+1 + (1− σ)(γ+ σ)Et[gt+1 + gt+2],

and by collecting terms:

βγ(σ− γ)Etdt+2 + γ ((1 + β)(σ− γ) + βσ+ (γ+ σ))Etdt+1 + γ ((1 + β)σ− β(γ+ σ)) dt

= (σ− (γ+ σ))(1− σ)Etgt+1 + ((σ− γ)− (γ+ σ))(1− σ)Etgt+2,

which can be simplified to yield the following equation:

βγ(σ− γ)Etdt+2 + γ(2(1 + β)σ− βγ)Etdt+1 + γ(1− βγ)dt = −γ(1− σ)Et[gt+1 + 2gt+2].

Finally, divide both sides by the positive coefficient γσ:

β
(

1− γ
σ

)
Etdt+2 +

(
2(1 + β)− βγ

σ

)
Etdt+1 +

(
1− βγ

σ

)
dt = −

(
1− σ
σ

)
Et[gt+1 + 2gt+2]. [A.3.5]

The dynamic equation [A.3.5] for the debt ratio dt can be written in terms of the quadratic equation
G (z) from [A.2.1] analysed in Lemma 1. If L denotes the lag operator, F the forward operator, and I the
identity operator, equation [A.3.5] is:

Et [G (F)dt] = −
(

1− σ
σ

)
Et [(I + 2F)Fgt] .

As it has been assumed the parameters are such that there is a unique steady state, Proposition 1 implies
that σ > γ/(2 + %). With the definition of β in [2.1], this is seen to be equivalent to [A.2.2], and therefore
the results of Lemma 1 can be applied. The factorization of G (z) from [A.2.3] can be used to obtain:

Et [δ(I− ζF)(I− λL)Fdt] = −
(

1− σ
σ

)
Et [(I + 2F)Fgt] ,
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where λ, ζ, and δ are the terms from [A.2.4a]–[A.2.4c], and therefore:

(Etdt+1 − λdt)− ζEt [Et+1dt+2 − λdt+1] = −1

δ

(
1− σ
σ

)
Et [gt+1 + 2gt+2] . [A.3.6]

Now consider the stochastic process ft defined in [3.4] using the coefficient ζ from [A.2.4b], which is
the same as that defined in [3.5c]. Given a bounded stochastic process gt for real GDP growth, and since
Lemma 1 demonstrates that |ζ| < 1, it follows that ft is also a bounded stochastic process.

To study the general class of solutions of [A.3.2a]–[A.3.2e], using ft from [3.4] and the coefficient λ from
[A.2.4a], define Υt as follows:

Υt ≡ Etdt+1 − λdt +
1

δ

(
1− σ
σ

)
(2Etft+1 + ft) . [A.3.7]

Given that gt is exogenous, so is the stochastic process ft. Since dt is endogenous, so is the stochastic
process Υt.

Observe that the definition of ft in [3.4] implies that it satisfies the following recursive equation:

ft − ζEtft+1 = Etgt+1. [A.3.8]

Next, from the definition of Υt in [A.3.7]:

Etdt+1 = λdt −
1

δ

(
1− σ
σ

)
(2Etft+1 + ft) + Υt, [A.3.9]

and by substituting this into [A.3.6]:

Υt − ζEtΥt+1 −
1

δ

(
1− σ
σ

)
Et [2(ft+1 − ζEt+1ft+2) + (ft − ζEtft+1)] = −1

δ

(
1− σ
σ

)
Et [gt+1 + 2gt+2] .

Using [A.3.8], this equation reduces to:
Υt = ζEtΥt+1, [A.3.10]

which characterizes the whole class of solutions for Υt, and through [A.3.7], the class of solutions for the
debt ratio dt.

Now consider the remaining Euler equation and budget identity combination. Take the budget identities
[A.3.2b] and [A.3.2c] of the middle-aged and old and substitute these into the Euler equation [A.3.2e] for
the middle-aged:

(−βγdt − γ(et + dt−1)) = Et [γ(et+1 + dt)]− σEtet+1 + (1− σ)Etgt+1.

Collect the terms in Etet+1 on the left-hand side to obtain:

(σ− γ)Etet+1 = γ(1 + β)dt + γ(et + dt−1) + (1− σ)Etgt+1,

then multiplying both sides by the positive coefficient (γ+σ) and applying the law of iterated expectations:

(σ− γ) ((γ+ σ)Etet+1) = γ(1 + β)(γ+ σ)dt + γ(γ+ σ)(et + dt−1) + (1− σ)(γ+ σ)Etgt+1.

Substitute the expression for (γ+ σ)Etet+1 from [A.3.3]:

(σ− γ) (−γ(1 + β)dt − βγEtdt+1 + (1− σ)Etgt+1)

= γ(1 + β)(γ+ σ)dt + γ(γ+ σ)(et + dt−1) + (1− σ)(γ+ σ)Etgt+1,

then collecting similar terms:

γ(γ+σ)(et + dt−1) +γ(1 +β) ((γ+ σ) + (σ− γ)) dt +βγ(σ−γ)Etdt+1 = (1−σ)((σ−γ)− (γ+σ))Etgt+1,
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and rearranging to obtain:

γ(γ+ σ)(et + dt−1) + 2γσ(1 + β)dt + βγ(σ− γ)Etdt+1 = −2γ(1− σ)Etgt+1.

Finally, dividing both sides by the non-zero coefficient γσ:(
1 +

γ

σ

)
(et + dt−1) + 2(1 + β)dt + β

(
1− γ

σ

)
Etdt+1 = −2

(
1− σ
σ

)
Etgt+1. [A.3.11]

A general solution to the debt ratio equation [A.3.5] has been shown to satisfy [A.3.9], in terms of a
stochastic process Υt which in turn satisfies the expectational difference equation [A.3.10]. Substituting
[A.3.9] into [A.3.11]:(

1 +
γ

σ

)
(et+dt−1)+2(1+β)dt+β

(
1− γ

σ

)(
λdt −

1

δ

(
1− σ
σ

)
(2Etft+1 + ft) + Υt

)
= −2

(
1− σ
σ

)
Etgt+1,

which yields the following after collecting terms:(
1 +

γ

σ

)
(et + dt−1) +

(
2(1 + β) + β

(
1− γ

σ

)
λ
)
dt + β

(
1− γ

σ

)
Υt

= −
(

1− σ
σ

)
Et

[
2gt+1 −

β

δ

(
1− γ

σ

)
(2ft+1 + ft)

]
.

[A.3.12]

The formulas [A.2.4b] and [A.2.4c] for ζ and δ imply that ζ = β(1 − γ/σ)/δ. Using this result and the
expression for gt in [A.3.8] to simplify the expectation on the right-hand side:

Et

[
2gt+1 −

β

δ

(
1− γ

σ

)
(ft+1 + 2ft+2)

]
= Et [2(ft+1 − ζft+2) + ζ(ft+1 + 2ft+2)] = (2 + ζ)Etft+1.

Substituting this back into [A.3.12], and noting that [A.2.4b] and [A.2.4c] imply β(1 − γ/σ) = δζ, yields
the following equation:(

1 +
γ

σ

)
(et + dt−1) +

(
2(1 + β) + β

(
1− γ

σ

)
λ
)
dt = δζΥt − (2 + ζ)

(
1− σ
σ

)
Etft+1. [A.3.13]

Define the following coefficients (can show that all are strictly positive):

θ ≡
2(1 + β) + β

(
1− γ

σ

)
λ

1 + γ
σ

, ϑ ≡ 2 + ζ

1 + γ
σ

, and κ ≡ δ

1 + γ
σ

, [A.3.14]

using which equation [A.3.13] can be written as:

(et + dt−1) + θdt = ζκΥt − ϑ
(

1− σ
σ

)
Etft+1. [A.3.15]

To derive the class of solutions to the debt equation, define lt ≡ et + dt−1 to be the total stock of
liabilities relative to GDP. The generational budget identities [A.3.2a]–[A.3.2c] can be written as:

cy,t = βγdt, cm,t = −βγdt − γlt, and co,t = γlt, [A.3.16]

and lt is determined by equation [A.3.15]:

lt + θdt = ζκΥt − ϑ
(

1− σ
σ

)
Etft+1. [A.3.17]

Now define νt to be the unpredictable component of the debt ratio dt, and υt to be the unpredictable
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component of Υt:
νt ≡ dt − Et−1dt, and υt ≡ Υt − Et−1Υt. [A.3.18]

First, consider the special case where ζ = 0. Equation [A.3.10] then implies Υt = 0. Next, consider the
general case of ζ 6= 0. Using [A.3.18], equation [A.3.10] can be expressed equivalently as

Υt = ζ−1Υt−1 + υt. [A.3.19]

Similarly, using [A.3.18], equation [A.3.9] is equivalent to:

dt+1 = λdt −
1

δ

(
1− σ
σ

)
Et[ft+1 + 2ft+2] + Υt + νt+1. [A.3.20]

Since |ζ| < 1 and because υt must be a martingale difference sequence (Et−1υt = 0) it is clear that Υt = 0
is the only bounded solution of the equation [A.3.19]. Furthermore, since Etνt+1 = 0, the innovation νt+1

must be uncorrelated with Υt. It follows from [A.3.20] that whenever Υt is unbounded (whenever Υt 6= 0),
the solution for dt is also unbounded. Therefore, given [A.3.16] if either dt or lt were unbounded then the
implied path for one of cy,t, cm,t, or co,t would be such as to violate one of the non-negativity constraints
on consumption. This cannot be a solution, from which it follows that Υt cannot be unbounded. Finally,
it then follows that Υt = 0, which requires υt = 0.

Unlike υt, there is no tight restriction that can be placed on νt. The only requirement imposed by
equations [A.3.2a]–[A.3.2e] is that νt is a bounded martingale difference process.

Therefore, from [A.3.20] it is established that all solutions for the debt ratio dt are in the following class

dt+1 = λdt −
1

δ

(
1− σ
σ

)
Et[ft+1 + 2ft+2] + νt+1, [A.3.21]

where the bounded stochastic process ft is as defined in [3.4], and νt is bounded and satisfies Etνt+1 = 0.

(ii) Given a solution for dt, equation [A.3.15] gives the solution for et and hence rt:

et = −θdt − dt−1 − ϑ
(

1− σ
σ

)
Etft+1. [A.3.22]

This completes the proof.

A.4 Proof of Proposition 3

The system of equations describing the economy with complete markets is [3.10a]–[3.10c].

(i) Note that equations [3.10a]–[3.10b] are of exactly the same form as [3.2a]–[3.2b] for the economy with
incomplete markets. Proposition 2 can then be applied to deduce that the debt-GDP ratio d∗t must satisfy
equation [3.3], that is:

d∗t = λd∗t−1 −
1

δ

(
1− σ
σ

)
(2Et−1ft + ft−1) + ν∗t , [A.4.1]

where ν∗t is such that Et−1ν
∗
t = 0, and where ft is as defined in [3.4] and the coefficients δ and λ in [3.5a]

and [3.5b]. Moreover, equation [3.6] must hold. Written in terms of e∗t ≡ r∗t − gt this becomes:

e∗t = −θd∗t − d∗t−1 − ϑ
(

1− σ
σ

)
ft, [A.4.2]

where the coefficients θ and ϑ are given in [3.7a]–[3.7b].
Equation [A.4.1] implies d∗t − Et−1d∗t = ν∗t . Taking the unpredictable components of both sides of

[A.4.2] and using the equation for ν∗t yields:

(e∗t − Et−1e∗t ) = −θν∗t − ϑ
(

1− σ
σ

)
(ft − Et−1ft). [A.4.3]
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Now take the unpredictable components of both sides of equation [3.10c], which must hold under
complete markets:

c∗m,t − Et−1c∗m,t = c∗o,t − Et−1c∗o,t. [A.4.4]

The budget constraints in [3.10a] imply that c∗m,t = −βγd∗t−γ(e∗t+d∗t−1) and c∗o,t = γ(e∗t+d∗t−1). Substituting
these into [A.4.4] and using the definition of ν∗t :

−βγν∗t − γ(e∗t − Et−1e∗t ) = γ(e∗t − Et−1e∗t−1),

and by collecting terms and cancelling the positive coefficient γ:

2(e∗t − Et−1e∗t ) = −βν∗t . [A.4.5]

Multiplying both sides of [A.4.3] by 2 and substituting using [A.4.5]:

(2θ− β)ν∗t = −2ϑ

(
1− σ
σ

)
(ft − Et−1ft). [A.4.6]

Using the expression for θ from [3.7a]:

2θ− β =

2 + β+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
1 + γ

σ

,

and hence from [3.5a] and [3.7b] that δ, θ, and ϑ are related by:

ϑ =
2θ− β
δ

. [A.4.7]

Substituting this into [A.4.6] yields:

ν∗t = −2

δ

(
1− σ
σ

)
(ft − Et−1ft). [A.4.8]

Finally, combining [A.4.1] and [A.4.8] leads to [3.11].
Next, take conditional expectations of [A.4.1] to obtain:

Et−1d
∗
t = λd∗t−1 −

1

δ

(
1− σ
σ

)
(2Et−1ft + ft−1) .

Subtracting this from [3.8] and using the definition d̃t ≡ dt − d∗t implies that [3.12] holds.

(ii) Next, use equation [A.4.2] to deduce:

e∗t − λe∗t−1 = −θ(d∗t − λd∗t−1)− (d∗t−1 − λd∗t−2)− ϑ
(

1− σ
σ

)
(ft − λft−1) ,

and by substituting from [3.11]:

e∗t − λe∗t−1 =
1

δ

(
1− σ
σ

)
(θ(2ft + ft−1) + (2ft−1 + ft−2)− δϑ(ft − λft−1)) .

After collecting similar terms, this can be written as:

e∗t − λe∗t−1 =
1

δ

(
1− σ
σ

)
((2θ− δϑ)ft + (2 + θ+ δϑλ)ft−1 + ft−2) . [A.4.9]
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Since equation [A.4.7] implies 2θ− β = δϑ:

2θ− δϑ = β. [A.4.10]

Now observe from the formulas [3.5a], [3.5c], [3.7a], and [3.7b] that the following relationships hold
between the coefficients:

θ =
δ+ βγ

σ

1 + γ
σ

, and ϑ =
2 + ζ

1 + γ
σ

.

These expressions can be used to note:

2 + θ+ δϑλ =
2
(
1 + γ

σ

)
+
(
δ+ βγ

σ

)
+ (δλ)(2 + ζ)

1 + γ
σ

,

and since [3.5a] and [3.5b] imply δλ = −(1− βγ/σ):

2 + θ+ δϑλ =
2γσ + 3βγσ + δ−

(
1− βγ

σ

)
ζ

1 + γ
σ

. [A.4.11]

By using the expressions for λ and ζ from [A.2.4a] and [A.2.4b], it follows that (1−βγ/σ)ζ = β(1−γ/σ)λ.
Substituting this into equation [A.4.11]:

2 + θ+ δϑλ =
2γσ + 3βγσ + δ− β

(
1− γ

σ

)
λ

1 + γ
σ

. [A.4.12]

Using the expression for δ from [A.2.4c] and the alternative formula for λ from [A.2.4a]:

δ− β
(

1− γ
σ

)
λ =

1

2

(1 + 2β) +

(
1− βγ

σ

)
+

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)

−1

2


√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)
− (1 + 2β)−

(
1− βγ

σ

) = 2(1 + β)− βγ
σ
.

Substituting this into [A.4.12] yields:

2 + θ+ δϑλ =
2
(

1 + β+ γ
σ + βγ

σ

)
1 + γ

σ

= 2(1 + β). [A.4.13]

Hence [A.4.9] together with equations [A.4.10] and [A.4.13] implies:

e∗t − λe∗t−1 =
1

δ

(
1− σ
σ

)
(βft + 2(1 + β)ft−1 + ft−2) .

Since e∗t − λe∗t−1 = (r∗t − λr∗t−1)− (gt − λgt−1, this demonstrates that equation [3.13] holds.
Using the definition of e∗t , equation [A.4.2] implies:

r∗t = −θd∗t − d∗t−1 + gt − ϑ
(

1− σ
σ

)
Etft+1. [A.4.14]

With the definitions r̃t ≡ rt − r∗t and d̃t ≡ dt − d∗t , subtracting [A.4.14] from [3.6] yields [3.14].

(iii) Subtracting the generational budget constraints with incomplete markets [3.2a] from the budget
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constraints with complete markets [3.10a]:

c̃y,t = βγd̃t, c̃m,t = −βγd̃t − γ(̃rt + d̃t−1), and c̃o,t = γ(̃rt + d̃t−1).

Noting that [3.14] implies r̃t + d̃t−1 = θd̃t and substituting into the equations above yields:

c̃y,t = βγd̃t, c̃m,t = γ(θ− β)d̃t, and c̃o,t = −γθd̃t.

Since C̃i,t = Ci,t − C∗i,t = ci,t − c∗i,t = c̃i,t, the results in [3.15] follow.

(iv) With σ = 1, it follows immediately from [3.12] that d∗t = 0. If Etgt+1 = 0 then Etgt+` = 0 for all
` ≥ 1 by the law of iterated expectations. The definition of ft in [3.4] then implies ft = 0, and hence d∗t = 0
by equation [3.12]. With either σ = 1 or ft = 0, [3.14] implies that r∗t = gt. This completes the proof.

A.5 Proof of Proposition 9

The social welfare function:

Wt0 = Et0

1

3

∞∑
t=t0−2

βt−t0ω̂∗t

C
1− 1

σ
y,t − 1

1− 1
σ

+ β
C

1− 1
σ

m,t+1 − 1

1− 1
σ

+ β2
C

1− 1
σ

o,t+2 − 1

1− 1
σ


 .

Since the weights ω̂∗t are calculated for the case where GDP is Ŷ ∗t , and since Ŷ ∗t = At, it follows that the
weights are independent of policy and thus

Wt0 = Et0

1

3

∞∑
t=t0−2

βt−t0
ℵ̂∗t
ĉ∗
− 1
σ

y,t

C
1− 1

σ
y,t

1− 1
σ

+ β
C

1− 1
σ

m,t+1

1− 1
σ

+ β2
C

1− 1
σ

o,t+2

1− 1
σ


+ I ,

where I denotes terms independent of policy, and where the weights have been replaced by the formula in
(??). Changing the order of summation and noting that terms dated prior to t0 are independent of policy
because predetermined:

Wt0 = Et0

1

3

∞∑
t=t0

βt−t0

 ℵ̂∗t
ĉ∗
− 1
σ

y,t

C
1− 1

σ
y,t

1− 1
σ

+
ℵ̂∗t−1
ĉ∗
− 1
σ

y,t−1

C
1− 1

σ
m,t

1− 1
σ

+
ℵ̂∗t−2
ĉ∗
− 1
σ

y,t−2

C
1− 1

σ
o,t

1− 1
σ


+ I .

Note that the Lagrangian multipliers ℵ̂∗t are such that:

ℵ̂∗t−1 = ℵ̂∗t

(
ĉ∗y,t−1
ĉ∗m,t

)− 1
σ

, and ℵ̂∗t−2 = ℵ̂∗t

(
ĉ∗y,t−2
ĉ∗o,t

)− 1
σ

.

By substituting these into the formula for the social welfare function:

Wt0 = Et0

1

3

∞∑
t=t0

βt−t0ℵ̂∗t

 C
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
C

1− 1
σ

m,t(
1− 1

σ

)
ĉ∗
− 1
σ

m,t

+
C

1− 1
σ

o,t(
1− 1

σ

)
ĉ∗
− 1
σ

o,t


+ I .

This can be written in terms of consumption to GDP ratios:

Wt0 = Et0

1

3

∞∑
t=t0

βt−t0ℵ̂∗tY
1− 1

σ
t

 c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t


+ I .
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Finally, using the fact that Yt/Ŷt = 1/∆t:

Wt0 = Et0

1

3

∞∑
t=t0

βt−t0ℵ̂∗t Ŷ
1− 1

σ
t ∆

−(1− 1
σ)

t

 c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t


+ I .

First, observe that

c
1− 1

σ
i,t = 1 +

(
1− 1

σ

)
ci,t +

1

2

(
1− 1

σ

)2

c2i,t + O3,

where O3 denotes terms of order three and higher in the exogenous shocks. Similarly:

1

ĉ∗
− 1
σ

i,t

= 1 +
1

σ
ĉ∗i,t +

1

2

1

σ2
ĉ∗

2
i,t + O3.

Putting these results together implies that

c
1− 1

σ
i,t(

1− 1
σ

)
ĉ∗
− 1
σ

i,t

=
1

1− 1
σ

+ ci,t +
1
σ

1− 1
σ

ĉ∗i,t +
1

2

(
1− 1

σ

)
c2i,t +

1

2

1
σ2

1− 1
σ

ĉ∗
2
i,t +

1

σ
ĉ∗i,tci,t + O3.

Summing over all generations:

c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

=
3

1− 1
σ

+
1
σ

1− 1
σ

(
ĉ∗y,t + ĉ∗m,t + ĉ∗o,t

)
+ (cy,t + cm,t + co,t) +

1

2

(
1− 1

σ

)(
c2y,t + c2m,t + c2o,t

)
+

1

2

1
σ2

1− 1
σ

(
ĉ∗

2
y,t + ĉ∗

2
m,t + ĉ∗

2
o,t

)
+

1

σ

(
ĉ∗y,tcy,t + ĉ∗m,tcm,t + ĉ∗o,tco,t

)
+ O3.

Since (1/3)(cy,t + cm,t + co,t) = 1 and (1/3)(ĉ∗y,t + ĉ∗m,t + ĉ∗o,t) = 1, it follows that:

(cy,t + cy,t + cy,t) = −1

2

(
c2y,t + c2y,t + c2y,t

)
+ O3,

(
ĉ∗y,t + ĉ∗m,t + ĉ∗o,t

)
= −1

2

(
ĉ∗

2
y,t + ĉ∗

2
m,t + ĉ∗

2
o,t

)
.

Substituting this into the earlier expression:

c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

=
3

1− 1
σ

− 1

2

1

σ

(
c2y,t + c2m,t + c2o,t

)
−1

2

1

σ

(
ĉ∗

2
y,t + ĉ∗

2
m,t + ĉ∗

2
o,t

)
+

1

σ

(
ĉ∗y,tcy,t + ĉ∗m,tcm,t + ĉ∗o,tco,t

)
+ O3,

and noting that:

c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

= −1

2

1

σ

(
(cy,t − ĉ∗y,t)

2 + (cm,t − ĉ∗m,t)
2 + (co,t − ĉ∗o,t)

2
)

+
3

1− 1
σ

+ O3.

Next, note that the expression for the cost of misallocation from relative price distortions:

∆t =
ε

2

ξ

1− ξ
p′

2
t + O3,
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and hence that ∆t = O2 since there are no first-order terms. The log-linearization of the price-setting
equation implies that:

Et−1p
′
t = O2,

and hence that:

P′t = Et−1Pt + O2, and p′t = Pt − Et−1Pt + O2 = πt − Et−1πt + O2.

Therefore, relative price distortions can be written in terms of the squared inflation surprise:

∆t =
ε

2

ξ

1− ξ
(πt − Et−1πt)2 + O3,

The production function implies Yt = At − ∆t. Since Ŷt = At, it follows that:

Yt − Ŷt = ∆t = O2.

Therefore, ĝt = gt + O2. Since gt is the driving variable for c∗i,t, it follows that:

ĉ∗i,t = c∗i,t + O2.

Substituting this into the earlier expression:

c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

=
3

1− 1
σ

−1

2

1

σ

(
(cy,t − c∗y,t)

2 + (cm,t − c∗m,t)
2 + (co,t − c∗o,t)

2
)
+O3.

The results of Proposition 3 imply that:

cy,t − c∗y,t = γβd̃t + O2, cm,t − c∗m,t = γ(θ− β)d̃t + O2, and co,t − c∗o,t = −γθd̃t + O2.

This leads to:

c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

=
3

1− 1
σ

− γ
2(β2 + (θ− β)θ)

σ
d̃2t + O3.

Note that:

∆
−(1− 1

σ)
t = 1−

(
1− 1

σ

)
∆t +

1

2

(
1− 1

σ

)2

∆2
t + O3,

but since ∆t = O2, this can actually be written as:

∆t = 1−
(

1− 1

σ

)
∆t + O3.

By combining equations (??) and (??):

1

3
∆
−(1− 1

σ)
t

 c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

 =
1

1− 1
σ

− ∆t −
γ2(β2 + (θ− β)θ)

3σ
d̃2t + O3.

Furthermore we can say that:

ℵ∗t Ŷ
1− 1

σ
t = 1 + O1 = 1 + I .
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It follows that:

1

3
ℵ̂∗t Ŷ

1− 1
σ

t ∆
−(1− 1

σ)
t

 c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t

 = −∆t−
γ2(β2 + (θ− β)θ)

3σ
d̃2t+I +O3.

By substituting the formula for ∆t derived earlier:

1

3
ℵ̂∗t Ŷ

1− 1
σ

t ∆
−(1− 1

σ)
t

 c
1− 1

σ
y,t(

1− 1
σ

)
ĉ∗
− 1
σ

y,t

+
c
1− 1

σ
m,t(

1− 1
σ

)
ĉ∗
− 1
σ

m,t

+
c
1− 1

σ
o,t(

1− 1
σ

)
ĉ∗
− 1
σ

o,t


= −ε

2

ξ

1− ξ
(πt − Et−1πt)2 −

γ2(β2 + (θ− β)θ)

3σ
d̃2t + I + O3.

Finally, we obtain that:

Wt0 = −
∞∑
t=t0

βt−t0Et0

[
ε

2

ξ

1− ξ
(πt − Et−1πt)2 +

γ2(β2 + (θ− β)θ)

3σ
d̃2t

]
+ I + O3.

A.6 Proof of Proposition 11

Substitute the formula for lifetime utility [5.1] into the social welfare function [5.21] and change the order
of summation to write the welfare function as

Wt0 = Et0

[
1

3

∞∑
t=t0

βt−t0

{
(logCy,t + logCm,t + logCo,t)−

1

η

(
Hη

y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

)}]
+ I , [A.6.1]

where I denotes terms independent of monetary policy. Writing Hη
i,t = Hi,tH

η−1
i,t and noting that equation

[5.3] implies (Hi,t/αi)
η−1 = wi,t/Ci,t, the terms in the disutility of labour at time t from [A.6.1] can be

written as follows:

Hη
y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

=
1

Yt

(
wy,tHy,t

cy,t
+
wm,tHm,t

cm,t
+
wo,tHo,t

co,t

)
, [A.6.2]

using the definition ci,t ≡ Ci,t/Yt. Next, equation [5.11] is substituted into [A.6.2] to obtain:

Hη
y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

=

(
wtNt

(1− τ)Yt

)(
αy

cy,t
+
αm

cm,t
+
αo

co,t

)
. [A.6.3]

Using the particular value of the wage-bill subsidy τ = ε−1 and wt = xtAt from equation [4.6]:

Hη
y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

=

(
xtAtNt

(1− ε−1)Yt

)(
αy

cy,t
+
αm

cm,t
+
αo

co,t

)
. [A.6.4]

Next, noting that [5.10] implies AtNt = ∆tYt, substitute the expression for real marginal cost xt from [5.13]
into [A.6.4] to obtain:

Hη
y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

= ∆ηt

(
Yt
At

)η(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)(
αy

cy,t
+
αm

cm,t
+
αo

co,t

)
. [A.6.5]

Defining the output gap Ỹt ≡ Yt/At, it follows that:

1

3

1

η

(
Hη

y,t

α
η−1
y

+
Hη

m,t

α
η−1
m

+
Hη

o,t

α
η−1
o

)
=

1

η
∆ηt Ỹ

η
t

(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)(αy

3
c−1y,t +

αm

3
c−1m,t +

αo

3
c−1o,t

)
. [A.6.6]
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The terms in consumption:

1

3
(logCy,t + logCm,t + logCo,t) = log Ỹt +

1

3
(log cy,t + log cm,t + log co,t) + I . [A.6.7]

Given the steady-state values ¯̃Y = 1 and c̄i = 1 for all i ∈ {y,m, o}:

1

3
(logCy,t + logCm,t + logCo,t) = Ỹt +

1

3
(cy,t + cm,t + co,t) + I . [A.6.8]

Note that:
1

3
(cy,t + cm,t + co,t) = −1

2

1

3

(
c2y,t + c2m,t + c2o,t

)
+ O3.

Consider the second-order approximations:

∆ηt = 1 + η∆t +
η2

2
∆2
t + O3, and Ỹ ηt = 1 + ηỸt +

η2

2
Ỹ2
t + O3.

And:

c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t = 1 +

(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)

+
1

2

(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)2

+ O3.

Also:

αy

3
c−1y,t +

αm

3
c−1m,t +

αo

3
c−1o,t = 1−

(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)

+
1

2

(αy

3
c2y,t +

αm

3
c2m,t +

αo

3
c2o,t

)
+ O3.

From before:
∆t =

εκ

2
(πt − Et−1πt)2 + O3.

It follows that:

1

η
∆ηt Ỹ

η
t

(
c
αy
3

y,t c
αm
3

m,t c
αo
3
o,t

)(αy

3
c−1y,t +

αm

3
c−1m,t +

αo

3
c−1o,t

)
= ∆t + Ỹt +

η

2
Ỹ2
t +

1

2

1

η

(αy

3
c2y,t +

αm

3
c2m,t +

αo

3
c2o,t

)
−1

2

1

η

(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)2

+ I + O3.

Note that: (αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)

= ξdt + O2.

and therefore:(αy

3
c2y,t +

αm

3
c2m,t +

αo

3
c2o,t

)
−
(αy

3
cy,t +

αm

3
cm,t +

αo

3
co,t
)2

=
αy

3
(cy,t − ξdt)2 +

αm

3
(cm,t − ξdt)2

+
αo

3
(co,t − ξdt)2 =

(αy

3
(γβ− ξ)2 +

αm

3
(γ(θ− β)− ξ)2 +

αo

3
(−γθ− ξ)2

)
d2t .

And also:
1

3

(
c2y,t + c2m,t + c2o,t

)
=

1

3

(
(γβ)2 + (γ(θ− β)2 + (−γθ)2

)
d2t .

Now define:

χ ≡ 1

3

(
(γβ)2 + (γ(θ− β)2 + (−γθ)2

)
+

1

η

(αy

3
(γβ− ξ)2 +

αm

3
(γ(θ− β)− ξ)2 +

αo

3
(−γθ− ξ)2

)
.

This can be rearranged as follows:

χ =
γ2

3

(
1 +

1

η

)(
θ2 + β2 + (θ− β)2

)
+

1

3

1

η

(
(−γβ)(γβ)2 + (γ(1 + β))(γ(θ− β))2 + (−γ)(−γθ)2

)
− ξ

2

η
.
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Further simplification yields:

χ =
γ2

3

(
1 +

1

η

)(
θ2 + β2 + (θ− β)2

)
+
γ3

3

1

η

(
(1 + β)(θ− β)2 − θ2 − β3

)
− ξ

2

η
.

Setting up the Lagrangian for minimizing loss function [5.22] subject to the constraints [5.20a]–[5.20c]:

Lt0 =
∞∑
t=t0

βt−t0Et0

[εκ
2

(πt − Et−1πt)2 +
η

2
Ỹ2
t +

χ

2
d2t

]
+
∞∑
t=t0

βt−t0Et0

[
zt

{
ηỸt + ξdt − κ(πt − Et−1πt)

}]
+

∞∑
t=t0

βt−t0Et0

[
kt {λdt − dt+1}+ it

{
it−1 + θdt + dt−1 − Ỹt + Ỹt−1 − πt − r̂∗t

}]
.

[A.6.9]

The first-order conditions of [A.6.9] with respect to the endogenous variables πt, dt, Ỹt, and it are:

εκ(πt − Et−1πt)− κ(zt − Et−1zt)− it = 0; [A.6.10a]

χdt + ξzt + λkt − β−1kt−1 + θit + βEtit+1 = 0; [A.6.10b]

ηỸt + ηzt − it + βEtit+1 = 0; [A.6.10c]

βEtit+1 = 0. [A.6.10d]

Using [A.6.10d], it follows from [A.6.10c] that:

zt = −Ỹt +
1

η
it. [A.6.11]

The Phillips curve [5.20c] can be rearranged as follows:

Ỹt =
κ

η
(πt − Et−1πt)−

ξ

η
dt, [A.6.12]

and combining this with [A.6.11] yields:

zt =
ξ

η
dt −

κ

η
(πt − Et−1πt) +

1

η
it. [A.6.13]

Taking conditional expectations and using [A.6.10d]:

Etzt+1 =
ξ

η
Etdt+1. [A.6.14]

Now multiply [A.6.10b] by β and use [A.6.10d] to deduce:

kt = βλEtkt+1 + βEt [χdt+1 + ξzt+1] . [A.6.15]

Substituting from [A.6.14] implies:

kt = βλEtkt+1 + β

(
χ+

ξ2

η

)
Etdt+1. [A.6.16]

Solving forwards and using [5.20a] to deduce that Etdt+` = λ`dt yields:

kt =

(
χ+

ξ2

η

)(
βλ

1− βλ2

)
dt. [A.6.17]
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Next, substitute the expressions for zt and kt from [A.6.13] and [A.6.17] into [A.6.10b] and use [A.6.10d]:

χdt + ξ

(
ξ

η
dt −

κ

η
(πt − Et−1πt) +

1

η
it
)

+

(
χ+

ξ2

η

)(
βλ

1− βλ2

)(
λdt −

1

β
dt−1

)
+ θit = 0. [A.6.18]

Simplifying this equation yields:(
χ+

ξ2

η

)(
1

1− βλ2

)
(dt − Et−1dt)−

ξκ

η
(πt − Et−1πt) +

(
θ+

ξ

η

)
it = 0, [A.6.19]

where equation [5.20a] has been used to write λdt−1 = Et−1dt.
Use equations [A.6.13] and [A.6.14] to deduce:

zt − Et−1zt =
ξ

η
(dt − Et−1dt)−

κ

η
(πt − Et−1πt) +

1

η
it. [A.6.20]

This equation can be combined with [A.6.10a] to yield:(
1 +

κ

η

)
it = κ

((
ε+

κ

η

)
(πt − Et−1πt)−

ξ

η
(dt − Et−1dt)

)
. [A.6.21]

Multiplying both sides of [A.6.19] by (1 + κ/η):(
χ+

ξ2

η

)(
1 +

κ

η

)(
1

1− βλ2

)
(dt − Et−1dt)−

ξκ

η

(
1 +

κ

η

)
(πt − Et−1πt) +

(
θ+

ξ

η

)(
1 +

κ

η

)
it = 0.

[A.6.22]
Now substituting [A.6.21] into this equation:((

χ+
ξ2

η

)(
1 +

κ

η

)(
1

1− βλ2

)
− ξκ
η

(
θ+

ξ

η

))
(dt − Et−1dt)

+κ

((
θ+

ξ

η

)(
ε+

κ

η

)
− ξ
η

(
1 +

κ

η

))
(πt − Et−1πt) = 0.

[A.6.23]

Note that:

κ

((
θ+

ξ

η

)(
ε+

κ

η

)
− ξ
η

(
1 +

κ

η

))
= κ

(
θ

(
ε+

κ

η

)
+ (ε− 1)

ξ

η

)
.

And:((
χ+

ξ2

η

)(
1 +

κ

η

)(
1

1− βλ2

)
− ξκ
η

(
θ+

ξ

η

))
=

(
χ+

ξ2

η

)(
1 +

(
1 +

κ

η

)(
βλ2

1− βλ2

))
+
κ

η
(χ− ξθ).

It follows that:

dt − Et−1dt = −

 κ
(
θ
(
ε+ κ

η

)
+ (ε− 1)ξη

)
(
χ+ ξ2

η

)(
1 +

(
1 + κ

η

)(
βλ2

1−βλ2

))
+ κ

η(χ− ξθ)

 (πt − Et−1πt).

Calculating the surprise component:

(πt − Et−1πt) + (gt − Et−1gt) = θ(dt − Et−1dt).
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The over-weighting of the price level in the weighted nominal income target is:

$ =
κθ
(
θ
(
ε+ κ

η

)
+ (ε− 1)ξη

)
(
χ+ ξ2

η

)(
1 +

(
1 + κ

η

)(
βλ2

1−βλ2

))
+ κ

η(χ− ξθ)
.
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