TFP Persistence and Monetary Policy

Roberto Pancrazi Marija Vukotić

Toulouse School of Economics Banque de France

NBS, April 27, 2012

- ∢ ≣ →

< 🗗 🕨

- **1** Well Known Facts about the Evolution of Macroeconomic Volatility:
 - Evidence 1: Large reduction in the last 30 years [Great Moderation: Kim and Nelson (1999), Stock and Watson (2003)]
- **②** Our Findings about the Evolution of Macroeconomic Volatility
 - ► Evidence 2: Uneven decline of the volatility across frequencies
 - Evidence 3: Increased persistence

Macroeconomic Variables are Trending

Real Per Capita Consumption (US)

We Need to Isolate the Trend

Real Per Capita Consumption (US) and its Trend

Business Cycle Frequencies (2q-32q) component

• US real per capita Consumption (red-dashed) and Output (blue-solid): 1950:1 - 2010:4

High-Frequencies (2q-16q) components

- US real per capita Consumption (red-dashed) and Output (blue-solid): 1950:1 2010:4
- Band-Pass filters: Christiano and Fitzgerald 2003.

Total Factor Productivity

- What drives the real variables dynamics? A possible candidate is TFP.
- Stationary component of U.S. TFP with varying capacity utilization (blue-solid) and constant utilization (red-dashed): 1950:1 2010:4

Normalized Spectrum of the TFP

Pancrazi&Vukotić (Toulouse School of Econ

NBS, April 27, 2012 8 / 44

< 🗇 🕨

Equilibrium dynamics of a model:

• A change in the autocorrelations structure of an exogenous process has first-order effect in the equilibrium:

$$y_t \simeq \tilde{g}\left(\Theta, \varrho\right) x_t$$
$$x_{t+1} \simeq \tilde{h}\left(\Theta, \varrho\right) x_t$$

- Policy-makers maximize some objective functions to determine their policy, taking into account the equilibrium dynamics.
- A changed autocorrelation structure modifies the policy functions, thus altering the optimal policy

In this paper:

Provide evidence of a change in the autocorrelation structure of TFP

- Split Sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Oerive the optimal monetary policy as a function of the TFP persistence

Road-map

- Provide evidence of a change in the autocorrelation structure of TFP
 - ► Split sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Ocharacterize the optimal monetary policy as a function of the TFP persistence

- 4 目 ト - 4 日 ト - 4 日 ト

Total Factor Productivity

Constructing the data

۲

 Y_t and L_t = non-farm business hours and output (BLS). K_t = Capital (BLS). U_t =capacity utilization manufacturing (FED Board)

 $TFP_{t} = \frac{Y_{t}}{L_{t}^{1-\alpha} \left(U_{t}K_{t}\right)^{\alpha}}$

• Stationary component \overline{TFP}_t follows an autoregressive process:

$$(1 - B(L)) \overline{TFP}_t = \sigma_{\varepsilon} \varepsilon_t \qquad \varepsilon_t \stackrel{iid}{\sim} N(0, 1).$$

Split Sample Statistics

• Split Sample at the early eighties (GM break)

	Sample 1: 1950:1- 1982:4		Sample 2: 1983:1-2009:4	
	Largest Root	Std. Dev. Innovations	Largest Root	Std. Dev. Innovations
		AR(1)		
Varying utilization	0.74 [0.06]	0.78 [0.05]	0.95 [0.04]	0.61 [0.04]
Constant utilization	0.83 [0.05]	1.03 [0.06]	0.91 [0.04]	0.63 [0.04]
		AR(4)		
Varying utilization	0.60	0.77	0.84	0.60
Constant utilization	0.63	1.00	0.92	0.59

3

Image: A math a math

Rolling Windows Statistics

• Assume an AR(1) process for \overline{TFP}_t : compute $\hat{\rho}_t$ (blue-solid) and $\hat{\sigma}_{\varepsilon,t}$ (green-dashed)

$$\hat{\rho}_{t} = \hat{\rho}\left(\left\{\overline{TFP}\right\}_{j=t-k}^{t}\right) \quad \hat{\sigma}_{\varepsilon,t} = \hat{\sigma}_{\varepsilon}\left(\left\{\overline{TFP}\right\}_{j=t-k}^{t}\right) \quad \text{for } t = k+1, \dots, T$$

Recursive Regression Estimates

• Assume an AR(1) process for \overline{TFP}_t : compute $\hat{\rho}_t^{RE}$

$$\hat{
ho}_t^{\mathsf{RE}} = \hat{
ho}\left(\left\{\overline{\mathsf{TFP}}
ight\}_{ar{k}}^t
ight) \qquad ext{for } t = ar{k} + 1, ..., T$$

TVP-SV Model

• Evidence suggests that $\hat{\rho}$ and $\hat{\sigma}_{\varepsilon}$ are time-varying:

$$\overline{TFP}_{t} = \rho \overline{TFP}_{t-1} + \sigma_{\varepsilon} \varepsilon_{t} \qquad \varepsilon_{t} \stackrel{iid}{\sim} N(0, 1)$$

 We formally estimate a Time-Varying-Parameter with Stochastic Volatility:

$$\begin{aligned} \overline{TFP}_t &= \rho_t \overline{TFP}_{t-1} + \varepsilon_t & \varepsilon_t \sim N\left(0, \sigma_t^2\right) \\ \rho_{t+1} &= \rho_t + u_t & u_t \sim N\left(0, \sigma_u^2\right) \\ \sigma_t^2 &= \gamma \exp\left(h_t\right) \\ h_{t+1} &= \phi h_t + \eta_t & \eta_t \sim N\left(0, \sigma_\eta^2\right). \end{aligned}$$

• Use 1 million repetitions with MCMC methods.

TVP-SW Model

• Posterior mean estimate for α_t :

• Posterior mean estimate for σ_t^2 :

Road-map

Provide evidence of a change in the autocorrelation structure of TFP

- Split sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Oerive the optimal monetary policy as a function of the TFP-persistence

Classical Monetary Model (Cooley-Hansen 1989)

- Money is neutral. Example to illustrate inflation dynamics.
- Perfect competition, flexible prices.
- Agents trade one-period nominally risk-less bonds
- Monetary authority sets the nominal interest rate:

$$i_t =
ho + \phi_\pi \pi_t$$

• Fisherian equation:

$$i_t = E_t \pi_{t+1} + r_t$$

Simple Monetary Model

• Real interest rate dynamics:

$$r_t =
ho + \sigma \psi E_t \left\{ \Delta a_{t+1}
ight\}$$

• Exogenous TFP:

$$\mathbf{a}_{t} = \boldsymbol{\rho}_{\mathbf{a}} \mathbf{a}_{t-1} + \boldsymbol{\sigma}_{\mathbf{a}} \boldsymbol{\varepsilon}_{t} \qquad \boldsymbol{\varepsilon}_{t} \stackrel{\textit{iid}}{\sim} \boldsymbol{N}\left(\mathbf{0}, \mathbf{1}\right)$$

• Equilibrium inflation dynamics:

$$\begin{aligned} \pi_t &= \sum_{k=0}^{\infty} \phi_{\pi}^{-(k+1)} E_t \left(r_{t+k} - \rho \right), \\ \pi_t &= \delta_a a_t \qquad \delta_a = -\frac{\sigma \psi \left(1 - \rho_a \right)}{\phi_{\pi} - \rho_a} \\ \sigma_{\pi}^2 &= \delta_a^2 \frac{\sigma_a^2}{(1 - \rho_a^2)} \end{aligned}$$

- 一司

Inflation Variance and TFP Persistence

• Inflation variance as a function of TFP persistence and monetary policy parameter:

Effectiveness of Monetary Policy and TFP Persistence

 Effectiveness of Monetary Policy on the instantaneous response of inflation to a technology shock:

$$\frac{\partial \delta_{a}}{\partial \phi_{\pi}} = \frac{\sigma \psi \left(1 - \rho_{a}\right)}{\left(\phi_{\pi} - \rho_{a}\right)^{2}}.$$

Proposition: If we consider a simple monetary model just described, then we can show that the variance of inflation is non-monotone in ρ_a and the value of the monetary policy response to inflation ϕ_{π} that maximizes the variance of inflation in is given by:

$$\phi^*_{\pi} = 1 + \rho_{\mathsf{a}} - \rho^2_{\mathsf{a}}$$

Road-map

1 Provide evidence of a change in the autocorrelation structure of TFP

- Split sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Oerive the optimal monetary policy as a function of the TFP-persistence

- 4 目 ト - 4 日 ト - 4 日 ト

Standard New-Keynesian Model

- Introducing features to obtain non-neutrality of money
- Staggered price setting and imperfect competition
- Agents trade one-period nominally risk-less bonds
- Monetary authority sets the nominal interest rate:

$$\dot{i}_t =
ho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + v_t$$

• Exogenous TFP and monetary shocks

$$\begin{array}{ll} \mathbf{a}_{t} &=& \rho_{a} \mathbf{a}_{t-1} + \sigma_{a} \varepsilon_{t}^{a}, \ \text{where} \ \varepsilon_{t}^{a} \sim \mathcal{N}\left(0,1\right) \\ \mathbf{v}_{t} &=& \rho_{v} \mathbf{v}_{t-1} + \sigma_{v} \varepsilon_{t}^{v}, \ \text{where} \ \varepsilon_{t}^{v} \sim \mathcal{N}\left(0,1\right) \end{array}$$

Equilibrium: first order approximation Output Gap

$$\begin{split} \tilde{y}_t &= \Lambda_v \left(\phi_{\pi}, \phi_y, \rho_v, \Theta \right) v_t + \Lambda_a \left(\phi_{\pi}, \phi_y, \rho_a, \Theta \right) a_t \\ \Lambda_v \left(\phi_{\pi}, \phi_y, \rho_v, \Theta \right) &= -\frac{(1 - \beta \rho_v)}{(1 - \beta \rho_v) \left(\sigma \left(1 - \rho_v \right) + \phi_y \right) + \kappa \left(\phi_{\pi} - \rho_v \right)} \\ \Lambda_a \left(\phi_{\pi}, \phi_y, \rho_a, \Theta \right) &= \frac{-\psi \sigma \left(1 - \rho_a \right) \left(1 - \beta \rho_a \right)}{\left(1 - \beta \rho_a \right) \left(\sigma \left(1 - \rho_a \right) + \phi_y \right) + \kappa \left(\phi_{\pi} - \rho_a \right)} \end{split}$$

э. NBS, April 27, 2012 26 / 44

< A

3

Equilibrium: first order approximation Inflation

$$\begin{aligned} \pi_t &= \Lambda_v^\pi \left(\phi_\pi, \phi_y, \rho_v, \Theta \right) v_t + \Lambda_a^\pi \left(\phi_\pi, \phi_y, \rho_a, \Theta \right) a_t \\ \Lambda_v^\pi \left(\phi_\pi, \phi_y, \rho_v, \Theta \right) &= -\frac{\kappa}{\left(1 - \beta \rho_v \right) \left(\sigma \left(1 - \rho_v \right) + \phi_y \right) + \kappa \left(\phi_\pi - \rho_v \right)} \\ \Lambda_a^\pi \left(\phi_\pi, \phi_y, \rho_a, \Theta \right) &= \frac{-\psi \sigma \left(1 - \rho_a \right) \kappa}{\left(1 - \beta \rho_a \right) \left(\sigma \left(1 - \rho_a \right) + \phi_y \right) + \kappa \left(\phi_\pi - \rho_a \right) \kappa} \end{aligned}$$

3

< □ > < ---->

Standard Calibration:

- Discount factor: $\beta = 0.99$
- ullet Inverse of intertemporal elast. of substitution: $\sigma=1$
- Labor share in the production function: $1 \alpha = \frac{2}{3}$
- Elasticity of subs among differentiated goods: $\varepsilon = 6$
- Price stickiness parameter: $\theta = \frac{2}{3}$
- ullet Inverse of the Frish elast. of labor supply: arphi=1
- $\bullet\,$ Monetary response to output gap: $\phi_{_Y}=0.125$

Equilibrium: Response of Output Gap to a Technology Shock

 \bullet Monotone relationship between TFP persistence and output gap response to technology $(\Lambda_{\textit{a}})$

Equilibrium: Variance of Output Gap

Intuition:

٢

$$r_{t}^{n}=\rho+\sigma\psi \mathsf{E}_{t}\left\{ \Delta \mathsf{a}_{t+1}\right\} =\rho+\sigma\psi\left(1-\rho_{\mathsf{a}}\right) \mathsf{a}_{t}$$

- When $ho_a
 ightarrow 1$, then r_t^n constant, as well as $r_t.$
- The output gap in this model results from the current and anticipated deviations of the real interest rate from its natural level:

$$\tilde{y}_t = -\frac{1}{\sigma} \sum_{k=0}^{\infty} \left(r_{t+k} - r_{t+k}^n \right)$$

Marginal cost:

 $\widetilde{mc}_t \propto \widetilde{y}_t$

• Inflation results from the price-setting decisions by firms that adjust their price considering present and current cost conditions:

$$\pi_t = \lambda \sum_{k=0}^{\infty} \beta^k E_t \left\{ \widetilde{mc}_{t+k} \right\}$$

Equilibrium: Response of Inflation to a technology shock

• Non-Monotone relationship between TFP persistence and inflation response to technology $(\Lambda_{\rm a}^{\pi})$

Equilibrium: Variance of Inflation

æ

Proposition: Assume that $\rho_a \in (-1, 1)$, $\beta < 1$, $\phi_y > 0$, $\theta < 1$, $\alpha < 1$, $\sigma > 0$, $\varepsilon > 0$, $\zeta > 0$, and $\phi_{\pi} > 1$. Then

$$\frac{\partial \Lambda_{a}\left(\phi_{\pi},\phi_{y},\rho_{a},\Theta\right)}{\partial \phi_{\pi}} > 0$$

and

$$\frac{\partial \Lambda_{a}\left(\phi_{\pi},\phi_{y},\rho_{a},\Theta\right)}{\partial \rho_{a}} > 0$$

for any structural parameter vector Θ . Moreover, there exists a value $\phi_{\pi}^{\pi*}$ that maximizes instantaneous response $\left| \Lambda_{a}^{\pi} \left(\phi_{\pi}, \phi_{y}, \rho_{a}, \Theta \right) \right|$. This value is:

$$\phi_{\pi}^{\pi*} = \frac{\kappa + \beta \sigma \left(1 - \rho_{a}\right)^{2} - \left(1 - \beta\right) \phi_{y}}{\kappa}$$

for any structural parameter vector Θ

Road-map

1 Provide evidence of a change in the autocorrelation structure of TFP

- Split sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Oerive the optimal monetary policy as a function of the TFP-persistence

A B F A B F

- More features are considered (add capital, real rigidities habit persistence, investment adjustment cost, variable capacity utilization)
- Smets and Wouters (2007)
- Nonlinear relationship among technology persistence, monetary policy response to inflation and variances of output gap and inflation

DSGE Model

Variance of Output Gap and Inflation

Pancrazi&Vukotić (Toulouse School of Econ

Road-map

1 Provide evidence of a change in the autocorrelation structure of TFP

- Split sample, Rolling Windows, Recursive Regressions, TVP-SV Estimates
- Analyze the analytical relationship between TFP persistence and monetary policy
 - Classical Monetary Model (provide intuition)
 - New-Keynesian Model (workhorse for monetary economics)
 - Medium Scale DSGE Model (numerical methods)
- Oerive the optimal monetary policy as a function of the TFP-persistence

A B M A B M

Welfare

- Average Welfare Loss: Rotemberg and Woodford (1999)
- Second order approximation to the consumer utility loss due to deviations from efficient allocation:

$$\textit{AWL} = rac{1}{2} \left[\left(\sigma + rac{arphi + lpha}{1 - lpha}
ight) \textit{var} \left(ilde{y}_t
ight) + rac{arepsilon}{\lambda} \textit{var} \left(\pi_t
ight)
ight].$$

- Calibrated parameters: $\sigma_{a}=$ 0.45%, $\sigma_{v}=$ 0.24%, $\rho_{v}=$ 0.15.
- The ratio of variance of v_t shock and α_t shock is kept constant at 3% as estimated by Smets and Wouters (2007)
- Isolate the effect of the increasing persistence by keeping constant the unconditional variance of a_t when varying ρ_a

Welfare

- Average Welfare Loss
- No Trade-off: respond to inflation arbitrarily strong (*devine coincidence*)
- \bullet Interesting dynamics driven by ρ_{a}

Welfare

Pancrazi&Vukotić (Toulouse School of Econ

NBS, April 27, 2012 41 / 44

Optimal Monetary Policy with Trade-off

- Without cost-push shocks, the monetary authority **does not face trade off** between stabilizing output variance and inflation variance and it is optimal to respond to inflation as strongly as possible
- Add cost-push shocks and then characterize optimal Taylor rule under commitment (φ^{*}_π, φ^{*}_ν) by minimizing expected welfare loss:

$$E(WL) = E\left\{ (1-\beta) \sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda_y \left(\tilde{y}_t - y^* \right)^2 + \lambda_i \left(i_t - i^* \right)^2 \right] \right\}$$

• Optimal ϕ_{π} and ϕ_{y} depend on the persistence of productivity: optimal response is to increase both ϕ_{π} and ϕ_{y} as a response to higher persistence of TFP

Optimal Monetary Policy Parameters as a Function of the Persistence of Technology

 Higher TFP response calls for a higher response of monetary policy, implying a lower ability of monetary policy to smooth the volatility of macroeconomic variables

Conclusions

- Statistical evidences for increasing TFP persistence
- Analyze the relationship between TFP persistence and monetary policy in the equilibrium dynamics of monetary models
- Study the effects of increased TFP persistence on the optimal monetary policy
- Investigation of the productivity in the different sectors of the economy [*Ongoing Research*]