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Introduction

Introduction

Econometric models for large datasets widely used in recent applied econometrics
literature

Two main approaches: factor models and VARs
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Introduction

Factor models

Small scale factor models. Geweke (1977), Sargent and Sims (1977).

Factor models for large datasets started classical and mostly non-parametric (Forni,
Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002))

Then turned parametric (Structural FAVAR) Kose, Otrock, and Whiteman (2003),

Bernanke, Boivin, and Eliasz (2005), Doz, Giannone, and Reichlin (2006).

Problems:

often two step approach (estimate factors, then treat them as known, though

full ML possible, e.g. Doz, Giannone, and Reichlin (2006))

relies on N diverging for consistent estimation

complex to test hypotheses and/or impose restrictions on factors

unclear why VAR for factors (Dufour and Stevanovic (2010) - FAVARMA),
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Introduction

BVARs

Recently, large Bayesian VARs proposed as alternative to factor models, Banbura,

Giannone, Reichlin (2010).

Large classical VARs not feasible, unless constraints imposed: reduced rank VARs,

Carriero, Kapetanios, Marcellino (2011).

Reduced rank VARs also similar to factor models → focus on how to use RR-VARs
for structural analysis
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Introduction

RR-(B)VARs

We suggest to use a model that bridges BVARs and factor models.

Specifically, we propose to impose reduced rank restrictions in a BVAR that, as we
will see, makes it similar to a factor model in terms of having a smaller set of key

shocks or variables, but preserves the attractive features of a BVAR, substantially
reducing its parameter dimensionality.

Reduced rank BVARs (RR-BVARs) have been previously considered in the

literature, see e.g. Geweke (1996) and Carriero Kapetanios Marcellino (2011) in a
small and large datasets context, respectively, but not for structural analysis.

Our main contribution is to show how a RR-BVAR can be used to compute the
response functions to structural shocks, for which we introduce and study the
properties of (both classical and Bayesian) methods for estimation, inference and

rank determination.
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Introduction

Structure of presentation

Specification

Estimation and Rank determination (classical and Bayesian)

Empirical analysis 1: shocks to factors - exploiting factor structure

Empirical analysis 2: monetary policy shock - traditional VAR type analysis
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Specification

RR-VAR

Consider the N-vector Yt = (y1,t , y2,t , ..., yN ,t )′:

Yt = Φ(L)Yt + εt , (1)

where Φ(L) = Φ1L+ ....+ΦpLp and εt are i.i.d. N(0,Σ).

Assume Φ(L) = A(L)B(L), where A(L) = A1L+ ....+ Ap1L
p1 , each Ai is N × r ,

B(L) = B0 + B1L+ ....+ Bp2L
p2 and each Bi is r ×N , with p1 + p2 = p, p1 ≥ 1,

p2 ≥ 0. Then

Yt = A(L)B(L)Yt + εt =
p1

∑
u=1

p2

∑
v=0

AuBvYt−u−v + εt (2)

If r much smaller than N , RR-VAR has much fewer parameters than VAR. For
example, if N = 50, p = 2 and r = 2, there are N(Np − r (p + 1)) = 4700
parameters less in RR-VAR than VAR (300 vs 5000).
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Specification

RR-VAR and factors

In Yt = A(L)B(L)Yt the r -dimensional vector of variables:

Ft = B(L)Yt = B0Yt + B1Yt−1 + ....+ Bp2Yt−p2 (3)

can be interpreted as r common factors.

Indeed, RR-VAR can be written as:

Yt = A(L)Ft + εt =
p1

∑
u=1

AuFt−u + εt , (4)

If p2 = 0, we get:

Yt =
p

∑
u=1

AuFt−u + εt , (5)

Ft = B0Yt (6)

As in factor models, "loadings" Au and factor weights B0 are not uniquely

identified, we assume that B0 = (Ir , B̃0).
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Specification

RR-VAR and factors

The factors Ft = B0Yt have closed form VAR(p) representation:

Ft = B0
p

∑
u=1

AuFt−u + B0εt = C (L)Ft + ut (7)

with C (L) = B0A(L) = B0A1L+ B0A2L2 + ....+ B0ApLp and ut = B0εt is i.i.d.
N(0,Ω) with Ω = B0ΣB ′0.

We can then group together (5) and (7) to form the system{
Yt = A(L)Ft + ε

Ft = C (L)Ft + ut
(8)
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Specification

MA representation (1)

The factors have the following MA representation:

Ft = (I − C (L))−1ut = (I − B0A(L))−1B0εt (9)

The moving average representation associated with (8) is:

Yt = A(L)Ft + εt = (A(L)(I − B0A(L))−1B0 + I )εt . (10)

A second moving average representation is particularly convenient for structural
analysis.
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Specification

MA representation (2)

The matrix B0⊥ is (N − r )×N full row rank matrix orthogonal to B0, i.e.
B0B ′0⊥ = 0, with rank of (B

′
0,B

′
0⊥) equal to N . B0B

′
0 has full rank (as B0 has full

rank) and we have:

B ′0(B0B
′
0)
−1B0 + B

′
0⊥(B0⊥B

′
0⊥)
−1B0⊥ = IN . (11)

Inserting this into the Wold representation (10) yields:

Yt = (B ′0(B0B
′
0)
−1 + A(L)(I − B0A(L))−1)B0εt + B ′0⊥(B0⊥B

′
0⊥)
−1B0⊥εt , (12)

Since B0εt = ut , where Ft = C (L)Ft + ut , we have:

Yt = (B ′0(B0B
′
0)
−1 + A(L)(I − B0A(L))−1)ut + B ′0⊥(B0⊥B ′0⊥)B0⊥εt . (13)

So, each element of Yt is driven by a set of r common errors ut -that are the drivers

of the factors Ft - and by elements of B0⊥εt , where ut and B0⊥εt are orthogonal.
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Specification

MA representations

It is then possible to have the following moving average representations:

Yt = (A(L)(I − B0A(L))−1B0 + I )εt (14)

and:

Yt = (B ′0(B0B
′
0)
−1 + A(L)(I − B0A(L))−1)ut + B ′0⊥(B0⊥B ′0⊥)B0⊥εt . (15)

Representation (14) is similar to the one used in the BVAR literature. There are as

many shocks as variables (N)

Representation (15) is similar to the one used in the factors literature. There is a

reduced number of shocks (r ) which drive all the factors, which in turn drive all the
variables in Yt .

We do not prefer either representation, we suggest to use the one that is more
suited to address the specific empirical problem under analysis.

There is a case where shocking the factors or shocking the variables produces the

same responses and this is of course when the factors are equal to a subset of the
variables and we shock one of the variables in this subset.

Carriero, Kapetanios, Marcellino () Structural Analysis with RR-VARs
National Bank of Serbia, 19 October 2012 12 /

44



Specification

MA representations and impulse responses

The structural shocks vt driving Ft are obtained from the reduced form errors ut
using any technique adopted in the structural VAR and structural FAVAR

literatures, e.g. Bernanke et al. (2005) or Eickmeier et al. (2009).

Simplest option is the Choleski-type decomposition Ω = P−1SP−1
′
, where P is

lower triangular and S is diagonal. Hence,

vt = Put . (16)

Combining this with (15) yields:

Yt = (B ′0(B0B
′
0)
−1 + A(L)(I − B0A(L))−1)P−1vt + B ′0⊥(B0⊥B ′0⊥)B0⊥εt (17)

from which impulse response functions can be easily computed.

For the alternative MA representation, the impulse responses can be based on:

Yt = (A(L)(I − B0A(L))−1B0 + I )Λ−1ε∗t (18)

where ε∗t are structural shocks and Λ−1 is such that Σ = Λ−1RΛ−1′, with R
diagonal.
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Specification

RR-VAR and factor models

In summary, RR-VAR is similar to the generalized dynamic factor model of Forni,

Hallin, Lippi, and Reichlin (2001) and Stock and Watson (2002a, 2002b), and even
more to the parametric versions of these models in the FAVAR literature, e.g.

Bernanke et al. (2005) and Doz, Giannone, and Reichlin (2006).

But also possibly important differences
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Specification

RR-VAR and factor models

Testing/imposing specific restrictions on the factors Ft , such as equality of one
factor to a specific economic variable, is much simpler in the RR − VAR context
(restrictions on B0) than in a factor context (see Bai and Ng 2006, 2010, Chahrour
2011). This greatly helps in structural interpretation.

In the Bayesian implementation, one can also impose priors on what variables "go"
into which factors by putting an informative prior on B0.

In the factor literature factors are unobservable and can be consistently estimated

only when N diverges. Within an RR − VAR context it is possible to consistently
estimate the "factors" Ft even when N is finite.

In the factor literature precise conditions on common and idiosyncratic components

are needed. In RR − VAR one could constrain the var cov matrix of B0⊥εt in (13),
or A(L) in (8). But these are optional.

Factors models estimated by PC do not necessarily have an exact VAR

representation (Dufour and Stevanovic (2010)), while this is the case within the
RR − VAR context.
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Estimation

Estimation

For estimation, we compactly rewrite the RR-VAR as in Reinsel (1983):

Yt = AZt−1 + εt , (19)

where

Z ′t−1 = (F
′
t−1...,F

′
t−p ) = (Y

′
t−1B

′
0,...,Y

′
t−pB

′
0,) = (Y

′
t−1 ,...,Y

′
t−p )(Ip ⊗ B

′
0) and

A = (A1, ...,Ap ),with B0 = (Ir , B̃0). Defining Y = (Y1, ...,YT )′ and

Z = (Z0,Z1, ...,ZT−1)′ and E = (ε1, ..., εT )′

Stacking the equations in (19) for t = 1, ...,T we have

Y = ZA+ E , (20)

where VAR(E ) = Ω = (Σ⊗ IT ).
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Estimation

Estimation via Maximum Likelihood

Reinsel (1983) did most of the work. He provides the FOCs and updating rule for

the gradient of the ML estimator for this case.

ML estimates can be obtained by iterating over the first order conditions of the
maximization problem. This does not involve numerical optimization if B0 is left

free of restrictions.

The likelihood function is:

−0.5T log |Ω| − 0.5ΣTt=1(Yt − AZt−1)′Ω−1(Yt − AZt−1) (21)

For any A and B̃0 the maximization with respect to Ω yields:

Ω̂ = (Y − ZA′)′(Y − ZA′)/T (22)
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Estimation

Estimation via Maximum Likelihood

The partial derivatives with respect to A (given B̃0 and Ω):

∂l
∂vec(A′)

= ΣTt=1(IN ⊗ Zt−1)′Ω−1(IN ⊗ Zt−1) = 0 (23)

The partial derivatives with respect to B̃0:

∂l
∂vec(B̃0)

= ΣTt=1Ut−1A
′Ω−1{Yt − (IN ⊗ Z ′t−1)α} = 0 (24)

where Ut−1 = (Ir ⊗ Y2,t−1, ..., Ir ⊗ Y2,t−p ) and Y
′
2,t comes from partitioning Y

′
t in

the first r and last N − r components: Y ′t = (Y
′
1,t ,Y

′
2,t ).

Reinsel suggested to solve in turn equations (22), (23) and (24) until convergence
is achieved, and established consistency and asymptotic normality of this estimator.

It is also possible to impose constraints on B̃0 but then the iterative scheme
described above is no longer available.
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Estimation

Estimation via Markov Chain Monte Carlo

We derive the conditional distributions and provide a new MCMC algorithm for the
estimation of

Yt = AZt−1 + εt , (25)

where
Z ′t−1 = (F

′
t−1...,F

′
t−p ) = (Y

′
t−1B

′
0,...,Y

′
t−pB

′
0,) = (Y

′
t−1 ,...,Y

′
t−p )(Ip ⊗ B

′
0) and

A = (A1, ...,Ap ), with B0 = (Ir , B̃0).

The model contains three sets of parameters, in the matrices A, B̃0, and Σ. The
joint posterior distribution p(A, B̃0,Σ|Y ) has not a known form, but it can be
simulated by drawing in turn from the conditional posterior distributions
p(A|B̃0,Σ,Y ), p(B̃0 |A,Σ,Y ), and p(Σ|A, B̃0,Y ).
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Estimation

Priors

Assume a Normal-Inverse Wishart prior for A and Σ :

A|Σ ∼ N(A0,Σ⊗Ω0), Σ ∼ IW (S0, v0). (26)

with:

Ω0 = τI (27)

A0 = 0 (28)

S0 = SAR (29)

v0 = N + 2 (30)

where SAR is a diagonal matrix of residual sum of squares from univariate
regressions and where

√
τ = 0.05.

We assume both a flat or an informative prior on B̃0. The informative prior would
be centered at the PC estimate, with s.d. 0.1.
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Estimation

Posteriors

Under the knowledge of B̃0 and Y the variable Zt−1 is known, and (25) is a simple

multivariate regression model as in Zellner (1973). Then the conditional posterior
distributions are:

A|Σ, B̃0,Y ∼ N(Ā,Σ⊗ Ω̄), Σ|B̃0,Y ∼ IW (S̄ , v̄ ). (31)

with:

Ω̄ = (Ω−10 + Z ′Z )−1 (32)

Ā = Ω̄(Ω−10 A0 + Z
′Y ) (33)

S̄ = S0 + Y
′Y + A′0Ω−10 A0 − Ā′Ω̄−1Ā (34)

v̄ = v0 + T (35)
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Estimation

Posterior simulation

Draws from p(A,Σ|B̃0,Y ) can be easily obtained by MC integration by generating
a sequence of m draws

{
Σj
}m
j=1 from Σ|B̃0,Y ∼ IW (S̄ , v̄ ) and then for each j

drawing from A|B̃0,Σ,Y ∼ N(Ā,Σj ⊗ Ω̄), which provides the sequence
{
Aj
}m
j=1 .

The prior features a Kronecker structure that restricts somehow the way shrinkage

can be imposed, but dramatically improves the computation time.

In particular the inversion of the matrix Ω−10 + Z ′Z is not problematic as it is of
dimension pr .

Restrictions on A could also be imposed.
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Estimation

Posterior simulation

Drawing from p(B̃0 |A,Σ,Y ) is less simple, as B0 has identification restrictions and
enters nonlinearly in the model : Yt = A(L)B0Yt .

To draw B̃0 |A,Σ,Y we use a Metropolis step.

In particular, for each draw in the sequence
{
Aj ,Σj

}m
j=1 a candidate B̃

∗
0j for each

element of B̃0 is drawn by sampling from a random walk:

vec(B̃∗0j ) = vec(B̃0j−1) + cηt (36)

where ηt is a standard normal i.i.d. process and c is scaling factor calibrated in
order to have about 30% rejections. The candidate draw is then accepted with
probability:

αk = min

{
p(B̃∗0j |Σ, B̃0,Y )
p(B̃0j−1 |Σ, B̃0,Y )

, 1

}
(37)

If the draw is accepted, then B̃0j = B̃∗0j , otherwise B̃0j = B̃0j−1.
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Estimation

Drawing impulse responses

Drawing in turn from p(A|B̃0,Σ,Y ), p(Σ|B̃0,Y ), and p(B0 |A,Σ,Y ) provides a
sequence of m draws

{
Aj ,Σj , B̃0

}m
j=1

from the joint posterior distribution of

B̃0,A,Σ.

Each draw can be then inserted into

Yt = (B ′0(B0B
′
0)
−1 + A(L)(I − B0A(L))−1)P−1vt + B ′0⊥(B0⊥B ′0⊥)B0⊥εt , (38)

or

Yt = (A(L)(I − B0A(L))−1B0 + I )Λ−1ε∗t (39)

which can be used to derive the impulse response functions for any horizon.
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Estimation

Determining the rank of the system
Classical

Two main approaches: information criteria or sequential testing.

Standard info criteria can be used. An attractive feature is that both r and the

number of lags can be jointly determined.

Sequential testing: starting with the null hypothesis of r = 1, a sequence of tests is
performed. If the null hypothesis is rejected, r is augmented by one and the test is

repeated. When the null cannot be rejected, r is adopted as the estimate of the
rank of each matrix Ai in (19).

Tests described in the paper.
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Estimation

Determining the rank of the system
Bayesian

Compute the marginal data density as a function of the chosen r . Such density is
given by:

pr (Y ) =
∫
pr (Y |θ)p(θ)dθ (40)

The optimal rank for the system is associated with the model featuring the highest

data density:
r ∗ = arg max

r
pr (Y ) (41)

Note r ∗ corresponds to the posterior mode of r under a flat prior.

The marginal data density pr (Y ) can be approximated numerically by using
Geweke’s (1999) modified harmonic mean estimator.
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Empirical applications

Shocks to factors

We analyze the effects of a shock to factors using the "medium" dataset of
Banbura, Giannone, Reichlin (2010)

We set the system rank to 3 and the lag length to 13.

We identify an output factor, a price factor, and a financial/monetary factor by
imposing restrictions on the matrix B0
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Empirical applications

Data

Variable Short name F1 F2 F3
Employees on nonfarm payroll EMP: TOTAL 1 0 0

CPI, all items CPI-U: ALL 0 1 0

Index of sensitive material prices SENS MAT’LS PRICE 0 b2,3 0

Personal income PI b1,4 0 0

Real Consumption CONSUMPTION b1,5 0 0

Industrial Production Index IP: TOTAL b1,6 0 0

Capacity Utilization CAP UTIL b1,7 0 0

Unemployment rate U: ALL b1,8 0 0

Housing starts HSTARTS: TOTAL b1,9 0 0

Producer Price Index (finished goods) PPI: FIN GDS 0 b2,10 0

Implicit price deflator for personal consumption expenditures PCE DEFL 0 b2,11 0

Average hourly earnings AHE: GOODS b1,12 0 0

Federal Funds, effective FEDFUNDS 0 0 1

M1 money stock M1 0 0 b3,14
M2 money stock M2 0 0 b3,15
Total reserves of depository institutions RESERVES TOT 0 0 b3,16
Nonborrowed reserves of depository institutions RESERVES NONBOR 0 0 b3,17
S&P’s common stock price index S&P 500 0 0 b3,18
Interest rate n treasury bills, 10 year constant maturity 10 YR T-BOND 0 0 b3,19
Effective Echange rate EX RATE: AVG 0 0 b3,20
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Empirical applications

Estimates

Prior mean (std=0.1) Posterior mean Posterior std

variable F1 F2 F3 F1 F2 F3 F1 F2 F3

EMP:TOTAL 1 0 0 1 0 0 - - -

CPI-U:ALL 0 1 0 0 1 0 - - -

SENSMAT PRICE 0 0.27 0 0 0.28 0 - 0.071 -

PI 0.74 0 0 0.30 0 0 0.078 - -

CONSUMPTION 0.50 0 0 0.24 0 0 0.076 - -

IP:TOTAL 1.09 0 0 0.38 0 0 0.098 - -

CAPUTIL 1.08 0 0 0.31 0 0 0.096 - -

U:ALL −0.76 0 0 −0.40 0 0 0.083 - -

HSTARTS 0.23 0 0 0.12 0 0 0.082 - -

PPI:FINGDS 0 0.89 0 0 0.28 0 - 0.090 -

PCEDEFL 0 0.99 0 0 0.31 0 - 0.090 -

AHE:GOODS 0.06 0 0 −0.006 0 0 0.088 - -

FEDFUNDS 0 0 1 0 0 1 - - -

M1 0 0 −1.80 0 0 −1.31 - - 0.101

M2 0 0 −1.27 0 0 −0.87 - - 0.102

RES.TOT 0 0 −1.82 0 0 −1.00 - - 0.101

RES.NONBOR 0 0 −1.96 0 0 −1.19 - - 0.105

S&P500 0 0 −0.67 0 0 −0.39 - - 0.087

10YRT-BOND 0 0 0.59 0 0 0.57 - - 0.091

EXRATE 0 0 0.46 0 0 0.37 - - 0.085
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Empirical applications
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Empirical applications
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Empirical applications
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Empirical applications
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Empirical applications

Responses to shocks to factors

The impulse responses are based on the representation:

Yt = {B ′0(B0B ′0)−1 + A(L)[I − B0A(L)]−1}P−1vt + B ′0⊥(B0⊥B ′0⊥)B0⊥εt , (42)

where P−1 is the Cholesky factor of the reduced form shocks ut .

(P−1SP−1
′
= Ω = B0ΣB ′) .

The s -period ahead response on the factor equation is:

Πs = C1Πs−1 + ...+ Cmin(s ,p)Πs−min(s ,p); s > 0 (43)

with Π0 = [I − B0A(0)]−1P−1 = P−1

The s -period ahead response on the VAR equation is:

Ψs = A1Πs−1 + ...+ Amin(s ,p)Πs−min(s ,p); s > 0 (44)

with Ψ0 = {B ′0(B0B ′0)−1 + A(0)[I − B0A(0)]−1}P−1 = B ′0(B0B ′0)−1P−1

We simulate the distribution of impulse responses using 16000 draws and plot median, 5th,

16th, 84th, and 95th quantiles
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Empirical applications

Shocks to factors

Carriero, Kapetanios, Marcellino () Structural Analysis with RR-VARs
National Bank of Serbia, 19 October 2012 35 /

44



Shock to output factor (demand)
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Shock to price factor (supply)
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Shock to financial factor
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Shock to financial factor

Monetary policy shock

We analyze the effects of a shock to the federal funds rate using the "medium"

dataset of Banbura, Giannone, Reichlin (2010)

We set the system rank to 3 and the lag length to 13.

We split the data in fast and slow moving variables, and use standard Cholesky

identification scheme
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Shock to financial factor

Data

Variable Short name Type
Employees on nonfarm payroll EMP: TOTAL slow

CPI, all items CPI-U: ALL slow

Index of sensitive material prices SENS MAT’LS PRICE slow

Personal income PI slow

Real Consumption CONSUMPTION slow

Industrial Production Index IP: TOTAL slow

Capacity Utilization CAP UTIL slow

Unemployment rate U: ALL slow

Housing starts HSTARTS: TOTAL slow

Producer Price Index (finished goods) PPI: FIN GDS slow

Implicit price deflator for personal consumption expenditures PCE DEFL slow

Average hourly earnings AHE: GOODS slow

Federal Funds, effective FEDFUNDS fast

M1 money stock M1 fast

M2 money stock M2 fast

Total reserves of depository institutions RESERVES TOT fast

Nonborrowed reserves of depository institutions RESERVES NONBOR fast

S&P’s common stock price index S&P 500 fast

Interest rate n treasury bills, 10 year constant maturity 10 YR T-BOND fast

Effective Echange rate EX RATE: AVG fast
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Shock to financial factor

Responses to monetary policy shock

The impulse responses are based on the representation:

Yt = {A(L)[I − B0A(L)]−1B0 + I}Λ−1ε∗t (45)

where ε∗t are structural shocks and Λ−1 is the Cholesky factor of the reduced form
shocks εt

The resulting s-period ahead response is:

Ψs = A1B0Ψs−1 + ...+ Amin(s ,p)B0Ψs−min(s ,p); s > 0 (46)

with Ψ0 = {A(0)[I − B0A(0)]−1B0 + I}Λ−1 = Λ−1.

We simulate the distribution of impulse responses using 5000 draws and plot
median, 5th, 16th, 84th, and 95th quantiles

We also compute the impulse response using ML. Bootstrapping yielded very large
bands.
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Shock to financial factor
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Conclusions

Conclusions

We have shown how to use RR-VARs for structural analysis

We have discussed classical and Bayesian estimation and rank determination

We have provided two empirical applications, focusing on VAR and factor style

identification approaches

Overall the method looks general, simple, and well performing, so promising for
empirical analyses with large datasets
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Appendix

Geweke harmonic mean estimator

The marginal data density pr (Y ) =
∫
p(Y |θ)p(θ)dθ is approximated numerically

by using Geweke’s (1999) modified harmonic mean estimator. In particular, by

collecting all the coeffi cients in the vector θ = (A,Σ, B̃0) and considering the

simulated posterior
{

θj ,
}m
j=1 =

{
Aj ,Σj , B̃0

}m
j=1

the estimator is:

p̂(Y ) =

[
1
d

d

∑
m=1

f (θm)
p(Y |θm)p(θm)

]−1
,

where f (·) is a truncated multivariate normal distribution calibrated using the
moments of the simulated posterior draws {θ}dm=1. See Geweke (1999) for details.
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