Monetary Policy, Doubts and Asset Prices

Pierpaolo Benigno, Luigi Paciello

LUISS and EIEF

EIEF

November 2012 - National Bank of Serbia

Introduction

- Central issue in macroeconomics is agent's expectations formation.
- Economic agents might face model uncertainty.
- Model uncertainty and ambiguity aversion help explaining asset prices.
- This paper focuses on the following question:

What is optimal monetary policy when the private sector doubts the model and is ambiguity averse?

Motivation

- Private sector model uncertainty may give rise to new distortions in decentralized allocations.
- ▶ Private sector model uncertainty may change policy transmission.

Literature

- Optimal monetary policy in the standard New Keynesian model Woodford (2003)
- Doubts, robust decision making and asset prices
 Hansen and Sargent (2005), Barillas, Hansen and Sargent (2009)...
- Doubts, robust decision making and business cycles
 Ilut and Schneider (2011)
- Monetary policy in models with fear of misspecification
 Dennis (2010), Woodford (2010), Adam and Woodford (2011)

Modeling distorted beliefs: Hansen-Sargent

- \blacktriangleright $\pi(s^t)$: **reference** probability measure on histories s^t
- $\tilde{\pi}(s^t)$: **subjective** probability measure on histories s^t
- ▶ $G(s^t)$: Radon-Nykodym type of derivative, $\tilde{E}[X_t] = E[G_t X_t]$.
- Multiplier preferences:

$$\min_{\{g_{t+1}\}} E_{t_0} \left\{ \sum_{t=t_0}^{\infty} \beta^{t-t_0} G_t U(C_t, L_t) + \kappa \beta \sum_{t=t_0}^{\infty} \beta^{t-t_0} E_t [G_{t+1} \ln g_{t+1}] \right\},$$

$$G_{t_0} = 1,$$
 $G_{t+1} = g_{t+1}G_t,$
 $E_tg_{t+1} = 1,$
 $\kappa > 0,$
 $\beta < 1.$

Household's technology and budget constraints

We assume

$$U(C_t, L_t) = \log \left(C_t \left(1 - L_t \right)^{\eta} \right).$$

Technologies and budget constraints:

$$C_t = \left[\int_0^1 c_t(j)^{rac{ heta}{ heta-1}} dj
ight]^{rac{ heta-1}{ heta}},$$
 $K_{t+1} = \left(1 - \delta - \phi\left(rac{I_t}{K_t}
ight)
ight)K_t + I_t,$
 $P_t(C_t + I_t) + x_tQ_t = x_{t-1}\left(Q_t + D_t
ight) + W_tN_t + P_t^kK_t,$

Household's FOCs

Non-expected utility representation (alike Epstein - Zin):

$$egin{array}{lcl} V_t &=& (C_t L_t^\eta)^{1-eta} [{f E}_t (V_{t+1}^{1-\psi})]^{rac{eta}{1-\psi}} \ & ext{where:} & \psi &\equiv& 1+rac{1}{\kappa(1-eta)}>1 \ & g_{t+1} &=& rac{V_{t+1}^{1-\psi}}{E_t V_{t+1}^{1-\psi}}, \end{array}$$

- First order conditions for C, L, and K
 - Optimal consumption basket

$$c_t(j) = C_t \left(P_t^j / P_t \right)^{-\theta}$$

Optimal labor supply

$$\frac{U_l(C_t, L_t)}{U_c(C_t, L_t)} = \frac{W_t}{P_t}$$

Household's FOCs

Optimality condition with respect to capital

$$1 = \tilde{\mathbf{E}}_t(m_{t,t+1}r_{t+1}^K) = \underbrace{E_t(m_{t,t+1}r_{t+1}^K)}_{\textbf{Standard Term}} + \underbrace{cov_t(g_{t+1}; m_{t,t+1}r_{t+1}^K)}_{\textbf{Distortion due to Doubts}},$$

$$\begin{aligned} \text{where:} \quad r_{t+1}^K &\equiv \frac{1}{q_t} \frac{P_{t+1}^K}{P_{t+1}} + \left[1 - \delta - \phi \left(\frac{I_{t+1}}{K_{t+1}}\right) + \phi' \left(\frac{I_{t+1}}{K_{t+1}}\right) \frac{I_{t+1}}{K_{t+1}}\right] \frac{q_{t+1}}{q_t} \\ m_{t,t+1} &\equiv \beta \frac{U_c(C_{t+T}, L_{t+T})}{U_c(C_t, L_t)}, \quad q_t &\equiv \frac{1}{1 - \phi' \left(\frac{I_t}{K_t}\right)}. \end{aligned}$$

Firms

- Mass 1 of monopolistic producers
- Firm j's production technology:

$$Y_t(j) = (K_t^j)^{\alpha} (A_t N_t^j)^{1-\alpha},$$

Nominal value of a generic firm j:

$$Q_t^j + D_t^j = \tilde{\mathbf{E}}_t \left\{ \sum_{T=t}^{\infty} M_{t,T} [P_T^j Y_T(j) - W_T N_T^j - P_T^k K_T^j] \right\},$$

$$\mathcal{E}_t \left\{ \sum_{T=t}^{\infty} rac{\mathbf{G}_{t+T}}{\mathbf{G}_t} M_{t,T} [P_T^j Y_T(j) - W_T N_T^j - P_T^k K_T^j]
ight\}$$

where
$$M_{t,t+T} \equiv \beta rac{U_c(C_{t+T},L_{t+T})}{U_c(C_t,L_t)} rac{P_t}{P_{t+T}}$$

Firm's FOCs

- If Calvo lottery allows: choose $\{P_T^j, L_T^j, K_T^j\}$ to maximize $Q_t^j + D_t^j$.
- ▶ Otherwise: $P_T^j = P_{T-1}^j$, and choose $\{L_T^j, K_T^j\}$ to maximize $Q_t^j + D_t^j$.
- First order conditions wrt $\{L_T^j, K_T^j\}$:
 - Optimal labor and capital demand satisfy the following equations

$$\begin{split} \frac{\mathcal{K}_t^j}{\mathcal{N}_t^j} &= \frac{\alpha}{1-\alpha} \frac{\mathcal{W}_t}{\mathcal{P}_t^k} \\ \mathcal{N}_t^j &= \left(\frac{\mathcal{K}_t^j}{\mathcal{N}_t^j}\right)^{-\alpha} \ \frac{Y_t}{\mathcal{A}_t^{1-\alpha}} \left(\frac{\mathcal{P}_t^j}{\mathcal{P}_t}\right)^{-\theta} \end{split}$$
 where: $Y_t = C_t + I_t$.

Firms' price setting

Optimal price setting condtion:

$$\frac{p_t^*}{P_t} = \left[\mu \frac{\tilde{\mathbf{E}}_t \left\{ \sum_{T=t}^{\infty} (\beta \gamma)^{T-t} U_c(C_T, L_T) Y_T m c_T \right\}}{\tilde{\mathbf{E}}_t \left\{ \sum_{T=t}^{\infty} (\beta \gamma)^{T-t} U_c(C_T, L_T) Y_T \right\}} \right]^{\theta-1},$$

where $\mu = \theta/(\theta - 1)$.

For intuition, consider the case $\alpha = 0$, i.e. no capital:

$$\frac{p_t^*}{P_t} = \left[\underbrace{\mu \frac{\sum_{T=t}^{\infty} (\beta \gamma)^{T-t} E_t \left(m c_T\right)}{1-\beta \gamma}}_{\text{Standard Term}} + \underbrace{\mu \frac{\sum_{T=t+1}^{\infty} (\beta \gamma)^{T-t} cov_t \left(m c_T, \frac{G_T}{G_t}\right)}{1-\beta \gamma}}_{\text{Distortion due to Doubts}}\right]^{\theta-1}.$$

Exogenous driving process and calibration

The technology frontier evolves over time according to

$$\log(A_t) = \zeta + \log(A_{t-1}) + \varepsilon_t, \qquad \varepsilon_t \quad \text{i.i.d. } N(0, \sigma_{\varepsilon}^2)$$

Parameter	Moment/Statistic Matched	Value
α	labor share of output	0.36
δ	capital depreciation rate	0.025
θ	average markup	6
η	inverse Frisch labor supply elasticity	0.45
γ	frequency of non-adjusting price	0.6
$\dot{\overline{\phi}}^{\prime\prime}$	elasticity of investment ratio to Tobin's q	0.25
ζ	mean TFP growth	0.003
$\sigma_{arepsilon}^{2}$	volatility TFP growth	0.012
β	average real interest rate	0.99
Ψ	equity premium/other values	{1, 25 ,50, 100 }

Planner's problem

- ▶ Planner trusts the (reference) model, knows private sector's beliefs.
- ▶ Two cases for policy objective:
 - 1. "Paternalistic" policy-maker

$$\textit{Max } E_{t_0} \left\{ \sum_{t=t_0}^{\infty} \beta^{t-t_0} U(C_t, L_t) \right\}$$

2. "Benevolent" policy-maker

$$ext{Max } E_{t_0} \left\{ G_t \sum_{t=t_0}^{\infty} eta^{t-t_0} \left[U(C_t, L_t) + \kappa eta E_t(g_{t+1} \ln g_{t+1})
ight]
ight\}$$

Max objective under commitment subject to set of FOCs determining equilibrium allocations.

Four types of distortions

- Four distortions:
 - Monopolistic firms → positive s.s markup → lower s.s output.
 - ▶ Price rigidity → inefficient price dispersion/ markup variability.
 - Distorted beliefs → distorted price setting/capital accumulation.
 - ► Capital adjustment costs → inefficient investment dynamics.

Model uncertainty invariant to monetary policy at first order

- ► Permanent technology shocks have permanent effects on *C*, independently of monetary policy
- **D**ynamics in g_{t+1} dominated by long-run dynamics in C:

$$\hat{g}_{t+1} \simeq -(\psi - 1)[(E_{t+1}\hat{C}_{\infty} - E_t\hat{C}_{\infty}) + \eta(E_{t+1}\hat{L}_{\infty} - E_t\hat{L}_{\infty})],$$

 $\simeq -(\psi - 1) \epsilon_{t+1}.$

▶ Monetary policy neutral in the long-run, no substantial impact on g_{t+1} .

Figure: Paternalistic policy maker

Figure: Paternalistic policy maker

Dynamics in g_t , monetary policy and price setting

Optimal policy increases average output, reduces average markup:

$$\left(\frac{1-\gamma\Pi_t^{\theta-1}}{1-\gamma}\right) = \frac{p^*}{P_t} = \left[\mu\frac{\sum_{T=t}^{\infty}(\beta\gamma)^{T-t}E_t(mc_T)}{1-\beta\gamma} + \underbrace{\mu\frac{\sum_{T=t+1}^{\infty}(\beta\gamma)^{T-t}cov_t(mc_T, \frac{G_T}{G_t})}{1-\beta\gamma}}_{<\mathbf{0}}\right]^{\theta-1},$$

Optimal policy increases the equity premium:

$$E_{t}\hat{r}_{t+1}^{K} - r_{t}^{f} + \frac{1}{2} \textit{Var}_{t}\hat{r}_{t+1}^{K} = -\textit{cov}_{t}(\hat{m}_{t,t+1}, \hat{r}_{t+1}^{K}) \underbrace{-\textit{cov}_{t}(\hat{g}_{t+1}, \hat{r}_{t+1}^{K})}_{2}$$

The role of doubts

Means of selected variables:

	Paternalistic	Inflation targeting
Consumption	1.68	1.58
Investment	0.52	0.42
Hours	0.62	0.60
Markup	1.15	1.20
Inflation*	0.00	0.00
Capital Prem.*	2.90	0.01
Equity Prem.*	4.40	0.02

Table: $\psi = 100$; *= in % and at annual rates

► The presence of doubts reduces average markup, increases average output, consumption, investment..

An illustration of the main mechanism

Let
$$\mu_c = E[c_t - c_t^*]$$
, $\sigma_c^2 = E[(c_t - c_t^*)^2]$, $\mu_\pi = E[\pi_t - \pi_t^*]$, $\sigma_\pi^2 = E[(\pi_t - \pi_t^*)^2]$.

▶ S.O. approximation to welfare loss in neighbor of s.s depends on:

$$a_1\mu_c + a_2\sigma_c^2 + a_3\mu_\pi + a_4\sigma_\pi^2 + ...,$$

with $a_1 < 0$, $a_2 > 0$, $a_3 > 0$ and $a_4 > 0$.

▶ In the standard REH model, equilibrium dynamics are s.t.:

$$\mu_{c} = f(\mu_{\pi}, \sigma_{\pi}^{2}, \sigma_{\pi c^{*}}, ...), \qquad \sigma_{c}^{2} = g(\sigma_{\pi}^{2}, \sigma_{\pi c^{*}}, ...),$$

trade-off between μ_c and σ_c^2 , σ_π^2 , but "slope" of function $f(\cdot)$ is "small".

▶ In the model with doubts, equilibrium dynamics are s.t.:

$$\mu_{\mathbf{c}} = \tilde{f}(\mu_{\pi}, \sigma_{\pi}^2, \sigma_{\pi c^*}, ...), \quad \sigma_{\mathbf{c}}^2 = \tilde{g}(\sigma_{\pi}^2, \sigma_{\pi c^*}, ...),$$

trade-off between μ_c and σ_c^2 , σ_π^2 , but "slope" of function $\tilde{f}(\cdot)$ is "large": $\sigma_{\pi c^*} > 0$, $\sigma_\pi^2 > 0$ implies larger σ_c^2 as before, but mch larger μ_c .

The benevolent policymaker

- Same transmission of paternalistic case....
- ..but different objective:

$$ext{Max } E_{t_0} \left\{ \sum_{t=t_0}^{\infty} eta^{t-t_0} \mathbf{G}_t \left[U(C_t, L_t) + \kappa eta E_t(g_{t+1} \ln g_{t+1}) \right]
ight\}$$

that can be roughly expressed as

$$\text{\it Max} \underbrace{\sum_{t=t_0}^{\infty} \beta^{t-t_0} E_{t_0}[U(C_t, L_t)]}_{\textit{Paternalistic objecitive}} + \underbrace{\sum_{t=t_0}^{\infty} \beta^{t-t_0} cov_{t_0}[U(C_t, L_t); G_t]}_{\textit{Term due to distorted beliefs}}$$

where due to the second term a more pro-cyclical policy reduces welfare.

Figure: Benevolent policy maker

Figure: Benevolent policy maker

Figure: The role of the different distortions

Interest rate rules vs Ramsey policy

- How does the paternalistic/benevolent optimal policy compare to Greenspan policy or Taylor rule?
- We consider a model where monetary policy follows an interest rate rule:

$$\ln\left(\frac{R_t^f}{\bar{R}^f}\right) = \rho_r \ln\left(\frac{R_{t-1}^f}{\bar{R}^f}\right) + (1 - \rho_r) \left(\phi_\pi \ln\frac{\Pi_t}{\bar{\Pi}} + \phi_y \ln\frac{Y_t}{Y_t^*}\right),$$

- We consider two parametrizations:
 - ▶ Standard Taylor rule: $\rho_r = 0$, $\phi_{\pi} = 1.5$, $\phi_{\nu} = 0.5$.
 - Estimated rule in the Greenspan's tenure: $\rho_r = 0.9$, $\phi_{\pi} = 1.01$, $\phi_{V} = 0.75$.

Figure: Interest rate rules vs Ramsey policy

Extensions and concluding remarks

Other results:

 Responding directly to asset price fluctuations does not substantially improve welfare

Conclusions:

- Accounting for model uncertainty may change optimal monetary policy in a substantial way
- Monetary policy very accommodative to productivity shock, inflating equity premium
- Asset price movements improve the output-inflation trade-off.
- Strict inflation targeting not always optimal
- Distinction between Paternalistic and Benevolent policymakers quantitatively important

Ellsberg paradox

- Urn A: 100 balls, red and black in unknown proportion
- Urn B: 100 balls, red and black in equal proportion
- Most people indifferent between betting on red and black when facing Urn A.
- Most people indifferent between betting on red and black when facing Urn B.
- Most people strictly prefer betting on red from Urn B than on red from Urn

 A. P back