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Abstract. I relate the theory of large shareholders in corporate governance to
market microstructure theory. The large shareholder literature examines how

a large shareholder trades off the advantage of being able to influence the de-

cisions of the firm, while small shareholders free ride on the outcomes, against
the extra risk entailed in large shareholdings. The market microstructure lit-

erature is concerned with the use of private information in pricing stocks.

The large shareholder can affect the underlying value of the firm not only
in the conventional sense; he can also profit because this improves his ability

to hide his private information from other informed traders and from mar-

ket makers. In a static version of the model, the large shareholder increases
the volatility of firm fundamentals, but only on the component of his private

information that is unforecastable by the market: he obfuscates.
In dynamic models of stock markets with private information, informed

traders, including the large shareholder, chop their orders in order to delay the

impact of their information on prices so that they can be inconspicuous. Using
Fourier transform methods to construct a continuous time dynamic version of

the large shareholder model, I demonstrate that the large shareholder alters

the fundamental autoregressive structure of the fundamental value of the firm
because this improves his ability to hide his private information from other

informed traders and from market makers, that is, to obfuscate.

1. Introduction

While CEO at Hewlett-Packard, Mark Hurd would have been privy to informa-
tion about the firm that outside shareholders did not have, and he was able to act on
that information by altering decisions about products, production, personnel and
myriad other matters—and keep these decisions from the view of outside sharehold-
ers. Should HP, which is in large part a printer and personal computer company,
enter a new market, say for enterprise software that would compete against SAP
and Oracle? Hurd would have inside knowledge, and could approve that entry or
not—and also trade on that information.

Hurd’s trades would affect the market price of HP. Knowing that he is a large
shareholder, Hurd would temper not only his trading but also his business decisions
within HP.

By being a large shareholder in HP, Hurd would have taken on risks that would
be potentially deleterious to him,1 but his ability to monitor the firm and make
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production decisions would enable him to appropriately minimize that risk. Smaller
shareholders might benefit from his incentives and receive lower returns in exchange
for the monitoring incentive—that is, they would free ride.

This is the perspective of the existing literature, with key papers by Admati,
Pfleiderer and Zechner [1], Shleifer and Vishny [27], and De Marzo and Uroševic
[16].

That the large shareholder will amplify the volatility of that part of the firm’s
fundamentals that he observes privately also seems intuitively reasonable: if you
give a CEO options in the company stock, his or her incentive is to increase the
volatility of the company stock price in order to increase the option price.

In this paper the large shareholder’s behavior is stationary. The large shareholder
is risk neutral, but risk drives his behavior because of his largeness in the market
for the firm’s shares, and he can affect the underlying value of the firm. In addition,
he has private information about the underlying shock processes. Other informed
large traders cannot affect firm value but do have private information as with the
descendants of the standard Kyle [24] model such as Back, Cao and Willard [5],
Holden and Subrahmanyam [21], and Foster and Viswanathan [17].

In these pure trading models, information is used by the market makers and by
the informed rivals from current or past prices to impute the information of the
informed traders. The informed traders know this, and attempt to trade on the
part of their private signals that is unforecastable using public price information.
As a result, total order flow looks like noise trade order flow; the informed traders
hide behind the noise traders. The informed trades are thus inconspicuous.

An alternative way to interpret inconspicuousness is that the privately informed
traders mask their trades so as to appear uninformed, and thus block other market
participants from imputing the information. This inconspicuousness appears in
other studies: Danilova [14], who coined the term, and Back and Baruch [4], each
using very different technical frameworks, find this result.

As in other versions of the Kyle model, the expected profit of the informed trader
is proportional to the product of the volatility of the fundamental value and the
volatility of the noise trade. If the informed trader is also a large shareholder, he
can affect the fundamental value of the stock by his actions, and so he can affect
that profit by increasing the volatility of the value. That strategy emerges here.

In a static version of the model, the large shareholder increases the volatility of
firm fundamentals in this way, but only on the unforecastable component of his
private information: he obfuscates.

In reality, the shocks that impinge on firm value are dynamic. Inconspicuous-
ness still emerges as a strategy: privately informed traders alter the dynamic (i.e.
autoregressive) structure of their trades so that total order flow has the same dy-
namic structure as noise trade. But in addition, the large shareholder can affect
the underlying value of the firm not only in the conventional static sense, he can
affect the dynamic structure of the value, that is, its autoregressive structure. He
can profit by altering this structure, because this improves his ability to hide his
private information from other informed traders and from market makers. The
large shareholder now not only increases volatility, he alters the serial correlation
structure of the firm’s fundamental value process.
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Thus, not only do large shareholders increase the volatility of firm fundamentals,
they make those fundamentals harder to glean from prices. This has implications
that go beyond standard concerns about market liquidity.

1.0.1. Outline. The plan of the paper is as follows. First, I briefly review the
literature on the volatility impact of managerial and shareholder incentives on firm
value volatility. I then set out a static model with the ingredients of the basic Kyle
[24] model: stocks, informed traders, market makers and noise traders, but with the
additional feature that the first of the informed traders is also a large shareholder
who can affect the fundamental value of the first stock via a costly action. The
notation allows for the presence of multiple stocks and multiple informed traders,
but for intuitive clarity I derive the first results in an example in which the large
shareholder is the only informed trader.

Next, I develop a dynamic, continuous time version of the pure trading model.
I use linear operator and control theory, known to economists as frequency domain
methods, which allow a succinct characterization of how endogenous dynamics are
affected by incentives and by equilibrium considerations; some details about the
methods are in a technical appendix. I present a couple of basic results regarding
the trading behavior of the informed traders, namely that in equilibrium they hide
their trades, and I note how this relates to other modeling approaches. I then
add the large shareholder to the dynamic model and demonstrate with these meth-
ods that his actions will alter the dynamic structure—that is, the time series or
autoregressive structure—of the firm’s fundamentals.

2. Literature

The conclusion that the large shareholder will amplify the volatility of that part
of the firm’s fundamentals that he observes privately seems intuitively reasonable:
if you give a CEO options in the company stock, his incentive is to increase the
volatility of the company stock price in order to increase the option price.2 This has
already been noted by the literature: recent references include Camara and Hen-
derson [12], Goldman and Slezak [18], Peng and Roell [26], Goldstein and Guembel
[19] and Bolton, Scheinkman and Xiong [10].

Peng and Roell empirically document the increase in shareholder litigation when
managers are given option contracts as incentives. Their conclusion is that such
contracts encourage the managers to focus on short term share prices.

Bolton, Scheinkman and Xiong develop a model in which the short term focus
of the managers when they are given such option contracts is potentially desirable,
because it enables them to increase the short term speculative component of the
share price, benefiting current shareholders. That finding is mirrored in a sense
here because the model here includes noise traders who are the source of profit for
the informed traders. Both Peng and Roell and Bolton, Scheinkman and Xiong
focus on managerial behavior, rather than large shareholder behavior.

Goldman and Slezak develop a model in which managers can exert agency-style
effort to manipulate earnings so as to increase the value of their incentive pay.
They conclude however that the manager’s increased effort can actually increase

2Options can be a substantial part of pay: Meg Whitman, who recently took over Hewlett-
Packard, was given compensation package consisting of a salary of $1 and options.
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shareholder welfare because the efforts are in the right direction, that is, they
improve firm value.

Goldstein and Guembel develop a model of price manipulation that is more
focused on the production side. Firm managers observe prices in the market and
make investment decisions based on those prices because they contain information
that the manager might not be able to directly observe. Informed speculators,
distinct from the managers, know this and manipulate prices to profit from the
manager’s response, rather than directly to their own private signals. This notion is
reflected in the model here: the large shareholder observes market prices (including
the prices of other stocks that might have correlated information) and acts on that
information as well as his own.

Camara and Henderson analyze the effects of several types of incentive contracts,
and the effects of penalties and risk aversion on manager behavior. Among other
conclusions, they find that risk aversion limits the manager’s incentive to increase
firm volatility.

3. The static model

The static model is similar to the model of Bernhardt and Taub [8]. There
are N informed traders,3 each of whom receives a separate zero-mean Gaussian-
distributed signal ei of the value of the firm, and a firm whose stock is traded.4 In
that model, firm value was the sum of those exogenous signals. Here, one of the
traders can affect the value of the firm via his actions. Firm value without action
by the large shareholder is

(1) v =

N∑
i=1

ei

The ei are potentially correlated, but to conserve notation in this introductory
model I will focus on the uncorrelated case. The vector of fundamental inputs to
value is e, with covariance matrix Eee′ = R.

In addition to the informed traders, there are numerous uninformed traders or
market makers, who attempt to impute the underlying value of the firm from order
flow. Finally, there are noise traders whose trades are are unmotivated by explicit
portfolio considerations and are modeled simply as noise.

3.0.2. The large shareholder. I assume the convention that the large shareholder
is informed trader 1; the informed traders 2, . . . , N receive signals e2, . . . , eN re-
spectively but cannot influence those signals. The large shareholder chooses θ1 to
weight his private signal in order to alter fundamental value:

v =

N∑
i=1

ei − θ1e1.

Because the fundamental e1 is constructed to have a zero mean, it is immediately
evident that the influence of θ1 will ultimately be on the variance of the fundamental

3In the literature on the Kyle model, the informed traders can also be called insiders or

speculators.
4It is straightforward to consider multiple stocks as was done in [8], but I will assume a single

stock here.
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e1. This is a departure from previous approaches, which have taken the underlying
value v as fixed.

The large shareholder’s actions are costly. I assume that the cost takes a specific
form: the large shareholder is penalized on the degree of amplification of his private
information, that is, on θ1e1. One might think of this as the influence of an ex-
tremely boiled-down and abstract version of an incentive contract that is structured
to constrain the large shareholder’s use of his private information to prevent over-
exploitation of the company’s resources. The part of the contract that is omitted
here characterizes the beneficial impact of the large shareholder’s actions on other
shareholders; using a technical framework similar to the one here, this idea was
pursued in [29].5

3.0.3. Trades. In the standard model such as that in Bernhardt, Seiler and Taub [9],
an informed trader’s trade xi (whether or not he is the large shareholder) is a linear
function of his private signal of value ei, expressed as trading intensity coefficient
bi and of the net information in price, with intensity γi. Because the informed
traders’ trades influence the price, the informed trader’s trade takes account of the
presence of his own and other traders’ reactions to their information:

(2) xi = biei + γi

 N∑
j=1

bjej − b1θ1e1 + u


where u is the noise trade.

3.0.4. Pricing. Market makers receive the aggregate orders from the informed traders
and from the noise traders, but are unable to distinguish individual trades. Because
they know the order flow includes a component from informed traders, they price
stocks by using signal extraction. The linear structure of the model means that
price is a linear function of order flow

p = λ

(
N∑
i=1

xi + u

)
where λ is a projection coefficient that expresses the signal extraction that is being
carried out.6

3.0.5. The informed’s trader’s problem. An informed trader i who is not a large
shareholder solves

max
xi

E

 N∑
j=1

ej − θ1e1 − λ

 N∑
j=1

xj + u

xi

∣∣∣∣∣ei, p


5In keeping with the terminology of DeMarzo and Uroševic, I will sometimes refer to the

large shareholder as the agent. This is intuitively reasonable if the large shareholder is an owner-

entrepreneur, but it is important to emphasize that in this model, the other informed traders are
also large, in that they can move the price of the firm’s shares by trading, but they cannot directly
affect fundamentals. I will refer to these informed traders as outside investors or traders. This is

a little different from DeMarzo and Uroševic’s model, where the outside investors are atomistic.
6In fact, linearity of pricing is not immediate, but it can be shown that a linear equilibrium

exists, and this paper focuses only on this possibility. The linearity of the pricing rule is developed
in Back [3]. Further analysis of the uniqueness of linear equilibria is presented in Boulatov, Kyle

and Livdan [11], and also Bernhardt and Taub [9].
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This is a standard construction along the lines of the Kyle [24] approach: the in-
formed trader chooses his order xi taking account of the impact of his trade on
the price. Also, the outside informed traders take the modification of the funda-
mental via the term θ1e1 as given, that is, they view e1 − θ1e1 simply as another
fundamental.

3.0.6. The large shareholder’s problem. Trader 1 is the large shareholder, who not
only has private information about one of the elements that affect fundamental
value, but in addition he can affect that element.

Large shareholders maximize trading profits, choose an amplification factor θ1,
and also face a penalty on their amplification factor. Assuming the large shareholder
is informed trader 1, they solve

(3) max
x1,θ1

E

∑
j

ej − θ1e1 − λ

∑
j

xj + u

x1 −
C

2
(θ1e1)2

∣∣∣∣∣e1, p



where C is a constant penalty on the magnitude of the large shareholder’s realized
amplification θ1e1.

The solution of the outside shareholder informed trader’s problem is a straight-
forward exercise: simply repeat the analysis of the Bernhardt and Taub [8] model,
but with the first element of the value modified by the actions of the large share-
holder. By restricting strategies to be linear in the elements of their information,
the expectation can be carried through the objective prior to, rather than subse-
quent to, the calculation of the optimum. It is established in Bernhardt and Taub
[8] that this reversal does not alter the outcome of the optimization. The choice
variables in the optimization then change, from choosing order flow xi directly, to
choosing it indirectly by choosing the coefficients of the information vector, namely
bi and γi—the trading intensities.

Expressing the trading strategies explicitly in terms of bi and γi as in (2), then
carrying through the expectation in this way and with the assumption that the
private signals are uncorrelated, the optimization problems of the informed traders
can then be stated as:

(4) max
{bi,γi}

{(
(1− θ1)− b1

(
1 +

∑
γj

)
λ
)
γib1σ

2
1

+

N∑
2,j 6=i

(
1− bj

(
1 +

∑
γj

)
λ
)
γibjσ

2
j

+
(

1− bi
(

1 +
∑

γj

)
λ
)

(1 + γi)biσ
2
i

−
(

1 +
∑

γj

)
λγiσ

2
u

}
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for the outside informed trader i, and

(5) max
{b1,γ1,θ1}

{(
(1− θ1)− b1

(
1 +

∑
γj

)
λ
)

(1 + γ1)b1σ
2
1

+

N∑
j=2

(
1− bj

(
1 +

∑
γj

)
λ
)
γ1bjσ

2
j

−
(

1 +
∑

γj

)
λγ1σ

2
u −

C

2
θ2

1σ
2
1

}
for the large shareholder.

3.1. The large shareholder’s first order conditions. The first-order condi-
tion for the private-signal intensity bi will now have some extra terms due to the
amplification factor, and there is an entirely new first-order condition for θ1.

The first-order condition for b1 can be written as follows:[(
(1− θ1)− b1

(
1 +

∑
γj

)
λ
)

(1 + γ1)− b1(1 + γ1)λ
(

1 +
∑

γj

)]
σ2

1 = 0

Defining

(6) H ≡ 1 +
∑

γj

the solution for b1 is

(7) b1 =
1

2λH
(1− θ1).

Thus, the large shareholder’s trading intensity on private information is modified
by his alteration of the variance of the fundamental.

3.1.1. The first order condition for γ1. The first order condition for γ1 is the same
as in the pure trading model, but with the value process replaced by the large-
shareholder-modified process.

(8)
(

(1− θ1)− b1
(

1 +
∑

γj

)
λ
)
b1σ

2
1 +

N∑
j=2

(
1− bj

(
1 +

∑
γj

)
λ
)
bjσ

2
j

−
(

1 +
∑

γj

)
λσ2

u − (b1λ) (1 + γ1)b1σ
2
1 +

N∑
j=2

(1− bjλ) γ1bjσ
2
j − λγ1σ

2
u = 0

After substituting the solution for the bj and the other γj this reduces to

(9)
1

2
(1− θ1) b1σ

2
1 +

1

2

N∑
j=2

bjσ
2
j

−
(

1 +
∑

γj

)
λσ2

u − (b1λ) (1 + γ1)b1σ
2
1 +

N∑
j=2

(1− bjλ) γ1bjσ
2
j − λγ1σ

2
u = 0

Further simplification is possible; I defer this to the example for N = 1 below; the
more general case is treated in [6].

The coefficient γ1 has the following interpretation: it is the (negative of the) pro-
jection coefficient of the informed trader’s trade on public information onto publicly
available information, namely price; in turn, price is informationally equivalent to
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total order flow.7 Because γ1 is negative (see the example below), the factor 1 + γ1

is the coefficient of the forecast error of that projection.

3.1.2. The first order condition for θ1. The first-order condition for θ1 is

−(1 + γ1)b1σ
2
1 − Cθ1σ

2
1 = 0.

The solution is

(10) θ1 = − (1 + γ1)b1
C

.

Thus, θ1 is proportional to the market maker’s forecast error coefficient (1 + γ)
on the traded part of the large shareholder’s private signal, b1; this is the same
quantity on which the informed trader’s orders are based.

3.2. An example. I next consider an example in which there is a single informed
trader (N = 1). This section mostly applies the model in [6], with N = 1 and
ρ = 0. The formulas for the equilibrium quantities on page 7 of [6] (changing to
the notation here, so that b is the coefficient on the private signal) are:

(11) b =
1

2λH
γ = − b2σ2

1

b2σ2
1 + σ2

u

λ =
1

H

bσ2
1

b2σ2
1 + σ2

u

where H is as defined in (6), and with the second equality following because N = 1.
Solving the three equations yields the equilibrium quantities

(12) b =
σu
σ1

γ = −1

2
λ =

σ1

σu
H =

1

2

Now we can solve for profit and for the forecast error variance. Using formula (12)
from [6], profit is

(13) π = λHσ2
u =

1

2

σ1

σu
σ2
u =

σ1σu
2

.

The forecast error variance is

(14) E
[
(e− λ(x+ u))2

]
= E

[
(e− λ(Hbe+Hu))2

]
= (1− λHb)2σ2

1 + (λH)2σ2
u

= (1− σ1

σu

1

2

σu
σ1

)2σ2
1 + (

σ1

σu

1

2
)2σ2

u =
σ2

1

4
+
σ2

1

4
=
σ2

1

2

where we have used the formula for total order flow from equation (12) in [6].
Observe that we have a result similar to that in [7]: noise trade is irrelevant for

the information content of price.

3.3. Obfuscation: The effect of the large shareholder in the example.
Now we can analyze the effect of the large shareholder construct. First observe
that because the large shareholder modifies the fundamental value of the firm, from
the market maker’s perspective that fundamental value is (1− θ1)e1 with variance
(1− θ1)2σ2

1 . Thus, define

(15) ẽ ≡ (1− θ1)e1 σ̃2
1 ≡ (1− θ1)σ1

Now the model can be solved for b and λ using ẽ as the fundamental. From the
solution in equation (10),

θ1 = −
σu

σ̃1

2C

7These assertions are elaborated in Bernhardt, Seiler and Taub [9] and in Seiler and Taub [28].
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Proposition 1. θ1 is negative.

Proof: The full solution for θ1 is complicated because σ̃ is itself a function of
θ1. We have

θ1 = −
σu

(1−θ1)σ1

2C
yielding a quadratic in θ1, with one positive and one negative solution. For large
values of C, these solutions approach +1 and −1 respectively; clearly the positive
solution, which would reduce the variance of the fundamental and incur a large
penalty, is suboptimal. Thus, it is appropriate to view the negative solution as the
economically appropriate solution. 2

Because θ1 is negative, the modified fundamental e1 − θ1e1 is in fact an ampli-
fication of the fundamental variance. But in addition, note that this term too is
proportional to the forecast error coefficient 1 + γ1. Thus, the amplification is only
on the unforecastable part of the fundamental, limited only by the penalty C. I
summarize the result as follows.

Proposition 2. The large shareholder amplifies the unforecastable part of his com-
ponent of the fundamental.

Proof: Using a projection algebra argument, Bernhardt and Taub ([6], p. 11)
demonstrate that the order flow xi is comprised of a linear function of the market
maker’s forecast error of the informed trader i’s private signal ei. For the large
shareholder, this translates to

x1 =
1 + γi
λ

E

(1− θ1)e1 +

n∑
2

ej

∣∣∣∣∣
(1− θ1)e1 − E

(1− θ1)e1

∣∣∣∣∣
N∑
j=1

xj + u


where it should be noted that the inner expectation is conditioned on total order

flow
∑N
j=1 xj + u. Factoring 1− θ1 out of this expression, we have

(16) x1 = (1− θ1)
1 + γi

λ̃
E

(1− θ1)e1 +

n∑
2

ej

∣∣∣∣∣
e1 − E

e1

∣∣∣∣∣
N∑
j=1

xj + u


where λ̃ is the pricing coefficient when there is a large shareholder. By Proposition
1, θ1 is negative, and so the key effect of the large shareholder is to not only amplify
the private signal, but to amplify the unforecastable part of the signal. 2

Corollary 3. The large shareholder’s amplification of the unforecastable part of his
component of the fundamental increases his profit.

Proof: Recall that profit is proportional to the product of the volatility of the
value and the noise trade σ1σu. With crude notation, the large shareholder’s gross
profit is proportional to

(1− θ1)σ1σu

although cost must be subtracted as well. Again, because 1− θ1 exceeds unity, the
large shareholder’s action serves to amplify the fundamental value e1 and thus his
profit. 2

Thus, the large shareholder does in fact conform to intuition: he will effectively
increase the volatility of the firm’s value, and he takes advantage of this excess
volatility in the dimension in which he receives signals in his trading. Thus, the
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large shareholder has a larger profit than a correspondingly informed outsider; these
profits come at the expense of the noise traders.

The increase in the effective fundamental variance increases the pricing coefficient
λ, as would be expected: the signal to noise ratio has been increased. The volatility
of price also increases:

E
[
(λH(b(1− θ1)e+ u))2

]
=
σ̃2

1

2
In addition, the forecast error variance also increases. This is not obvious a priori,
because the higher variance of the fundamental σ2

1 raises the signal to noise ratio in
order flow. This would be expected to increase λ—which it does—and thus reduce
the overall forecast error variance. However, the way the signal is amplified is via
the forecast error of the signal, and intuitively this should not improve the signal
component, and this is the result.

Proposition 4. The large shareholder amplifies the market maker’s forecast error
variance.

Proof: Specifically, we can note that λ̃ is

λ̃ =
σ̃1

σu
=

(1− θ1)σ1

σu

Recalling the formula for the large shareholder’s order flow xi from (16),

x1 = (1− θ1)
1 + γi

λ̃
E

(1− θ1)e1 +

n∑
2

ej

∣∣∣∣∣
e1 − E

e1

∣∣∣∣∣
N∑
j=1

xj + u


= (1− θ1)2 1 + γi

(1−θ1)σ1

σu

E

e1 +

n∑
2

ej

∣∣∣∣∣
e1 − E

e1

∣∣∣∣∣
N∑
j=1

xj + u


= (1− θ1)

1 + γi
σ1

σu

E

e1 +

n∑
2

ej

∣∣∣∣∣
e1 − E

e1

∣∣∣∣∣
N∑
j=1

xj + u


leaving intact the assertion that the large shareholder amplifies the market maker’s
forecast error. 2

The fact that the large shareholder amplifies the non-forecastable part of his order
flow—obfuscation—suggests that in a dynamic setting the large shareholder might
want to alter the time series structure of the fundamental. This conjecture is true
and in the next section I set the groundwork for demonstrating this. The method
used in the static model—restricting actions to be linear functions of the informa-
tion realizations, and then solving for the coefficients of those linear polices—works
in the dynamic setting as well, but requires functional analysis tools.
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4. Adding dynamics

I will now set out a dynamic version of the model using a continuous time
approach. The approach and structure is much like that of [28], except that it
is set in continuous time, and some notation and methods need to be translated.
After noting some informational characteristics of the equilibrium, I then expand
the model to examine the effects of the large shareholder on firm value and price
dynamics.

In Bernhardt and Taub [8], the cross-asset covariance structure of prices is driven
strictly by the covariance structure of the underlying assets, but not of the noise
trade, while cross-asset order flow is driven strictly by the covariance structure of
the noise trade, but not of the assets. As mentioned in the introduction this is
because the informed traders hide behind the noise trade. Correspondingly, the
market makers structure the price process so that no arbitrage can be done against
them by the informed traders that would be enabled if the price differed in structure
from the value.

These results extend to the dynamic setting: the vector autoregressive structure
of the order flow vector process mimics the autoregressive structure of the noise
trade process, and the price vector process mimics the autoregressive structure of
the fundamental firm value process. The order flow process will depend on the
covariance structure of the noise trade process, and not on the covariance structure
for the value process. The opposite is true for the price process: the price pro-
cess will depend on the covariance structure of the value process, but not on the
covariance structure of the noise trade process.

I use the continuous-time analogue of Bernhardt, Seiler and Taub [9] and Seiler
and Taub [28] in order to carry out the dynamic analysis. The main tools are the
Laplace and Fourier transforms and the continuous-time analogue of the Wiener-
Hopf equation. These tools are described in sections 6.A (pp. 216-220), 7.1-7.2
(pp. 221-228), and 7.A (262-264) of Kailath, Sayed and Hassibi [23]. An additional
reference is Hansen and Sargent [20].

In the standard market microstructure literature, the noise trade is assumed to be
a Brownian process, while there is a single realization of the underlying asset value,
as in the original Kyle model [24], or another Brownian process as in Danilova’s
recent model [14]. Thus, both noise trade and information are highly persistent.
By contrast, in this paper while I maintain the assumption of a persistent value
process, I assume that the noise trade is serially uncorrelated. At least at a logical
level this is a more satisfying assumption, as it precludes persistent errors on the
part of noise traders. But it also serves to highlight the starkly different dynamic
structure of order flow and prices, differences that highlight the economic forces
driving those processes.

In the next section I develop the technical elements of the dynamic model with-
out the large shareholder, building on previous work. The conclusions regarding
inconspicuousness are easily established in this framework. In subsequent sections
I add the large shareholder and develop the main result.
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5. The dynamic model without the large shareholder

In order to set the stage for the large shareholder analysis, I first set out the
model without the large shareholder. Some basic propositions can be stated, some
of which reiterate and highlight the findings in [9] and [28]. The first step is to
write down the objectives of the informed traders and of the market makers, and
to derive the structure of the aggregate information formula.

5.1. The setting and the informed shareholders’ objectives. In this paper
I begin with the assumption that the total cost of shares X(t) held at each time t

is proportional to the cost of acquiring them at each instant,
∫ t

0
P (s)x(s)ds, where

x(s)ds is the incremental shares acquired.
In the standard setup of the Kyle model, the underlying value is fixed, and is

revealed at the terminal time T . There are two differences here: first, the horizon
is infinite, and so the underlying value is effectively never revealed. Second, the
value fluctuates stochastically, and meaning must be given to this fluctuation. The
interpretation will be that at each moment there is a possibility that the firm will
be bought, merged or terminate, with some probability that is independent of past
or current states and associated hazard rate δ; I will refer to this as conversion.
Should the conversion occur, the payoff for an informed trader is

v(t)

∫ t

0

x(s)ds

where v(t) is the time-t realization of the stochastically evolving fundamental value,
and this happens with probability δe−δt. The probability-weighted expected payoff
at time t is then

E

[
δe−δtv(t)

∫ t

0

x(s)ds

∣∣∣∣ω(0)

]
where ω(t) is the trader’s information at t. Thus, the expected profit over all dates
of conversion is

E

[∫ ∞
0

δe−δtv(t)

∫ t

0

x(s) ds dt

∣∣∣∣ω(0)

]
By changing the order of integration we can write the inner terms as

(17)

∫ ∞
0

x(t)

∫ ∞
t

δe−δsv(s) ds dt

Defining the probability-discounted value of the asset at any moment as

V (t) ≡
∫ ∞
t

δe−δtv(s) ds

we can write equation (17) as

(18) E

[∫ ∞
0

x(t)V (t)dt

∣∣∣∣ω(0)

]
.

This then justifies writing discounted expected profit as

(19) E

[∫ ∞
0

(V (t)− P (t))x(t)dt

∣∣∣∣ω(0)

]
.
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5.1.1. Value and noise trade process specifics. Let ei(t) be the private information
process for trader i; for the moment I assume that these are zero-mean white noise
processes8 that are uncorrelated across traders, and it remains the case that the
firm value is the sum of these signals. Now however, the signals and consequently
firm value are stochastic processes. The value process is a filtered version of these
fundamental signal processes:

(20) v(t) =

∫ ∞
0

φ(τ)

N∑
i=1

ei(t− τ)dτ

Similarly, the noise trade process can be a filtered version of a fundamental white
noise process n(t):

u(t) =

∫ ∞
0

ν(τ)n(t− τ)dτ.

Both the value and noise processes are characterized by the filters φ and ν. For
the purposes of characterizing the model it will be assumed when necessary that
the value and noise trade processes are Ornstein-Uhlebeck processes, that is, ana-
logues of autoregressive processes in discrete time settings. The filters are then in
exponential form:

φ(τ) = e−ρτ ν(τ) = e−ητ .

These processes become Brownian motions at ρ = 0 and η = 0, and white noise
processes at the other extreme, ρ = ∞ and η = ∞. Economic intuition suggests
that the value processes should be highly predictable; similarly intuition suggests
that noise trade should not be persistent. To keep the model tractable I will assume
that noise trade is white noise (η = ∞), but that the value process can have any
degree of persistence, characterized by 0 ≤ ρ <∞.

Using the continuous time transform as described in Kailath, Sayed and Hassibi
[23] p. 217, and also in Appendix A, the s-transforms of the filters for the value
and noise trade processes are then Φ = 1

s+ρ and the identity matrix I respectively.

5.2. Informed traders’ order flow. Also, let Ω(t) be the public information
process, which is going to be equivalent to the information in price. The informed
trader’s trading strategy process is a linear filtering of the histories of these pro-
cesses:

xi(t) =

∫ ∞
τ=0

(bi,ω(τ)ei(t− τ) + bi,Ω(τ)Ω(t− τ))dτ.

In addition, noise traders exogenously submit an order flow process u(t). Adding
up the informed and noise trade yields total order flow:

(21)

N∑
i=1

xi(t) + u(t) =

N∑
i=1

(∫ ∞
τ=0

(bi,ω(τ)ei(t− τ) + bi,Ω(τ)Ω(t− τ))dτ

)
+ u(t).

8See [23] p. 218 or [20] p. 209.
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Defining the left hand side as Ω(t), we have

(22) Ω(t) =

N∑
i=1

(∫ ∞
τ=0

(bi,ω(τ)ei(t− τ) + bi,Ω(τ)Ω(t− τ))dτ

)
+ u(t)

=

N∑
i=1

∫ ∞
τ=0

bi,ω(τ)ei(t− τ)dτ +

N∑
i=1

∫ ∞
τ=0

bi,Ω(τ)Ω(t− τ)dτ + u(t).

This is a convolution as described in Kailath, Sayed and Hassibi [23] p. 217, but
the integration is one-sided. However, if it is known in advance that the functions
bi,ω and bi,Ω are one-sided, the integral can be converted to two-sided form and
obtain the Laplace transform of the equation, following Kailath, Sayed and Hassibi’s
convention of using capital letters for the Laplace transform:

O(s) =

N∑
i=1

Bi(s)Ei(s) +

N∑
i=1

Bi,Ω(s)O(s) + U(s).

where Bi(s) is the transform of bi,ω. (See pp. 216-217 of [23].) The convolutions
have been converted into products as a result of the transform. Now it is possible
to solve for O(s). This yields

(23) O(s) =

(
1−

N∑
i=1

Bi,Ω(s)

)−1( N∑
i=1

Bi(s)Ei(s) + U(s)

)

The procedure here was to convert to the Laplace transform and then solve—this
is different from the order in discrete time, where the time domain problem was
solved directly once the lag operator form was used.

The solution approach used in [9] can now be followed: define γi as the filter
characterized by the transform

(24) Γj(s) =

(
1−

N∑
i=1

Bi,Ω(s)

)−1

Bj,Ω(s)

and then substituting from equation (22) into the order flow equation (21) and
using (23) and (24), the order flow process becomes

(25) xi(t) =

∫ ∞
τ=0

bi,ω(τ)ei(t− τ)dτ

+

∫ ∞
τ=0

γi(τ)

 N∑
j=1

∫ ∞
σ=0

bj,ω(σ)ej(t− τ − σ)dσdτ + u(t− τ)

 dτ

The bracketed term can then be viewed as the public information process inherent
in the price process.
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Assuming linear pricing, the price process is determined by a linear filter λ, with
transform Λ, applied to total order flow:9

(26)

p(t) =

∫ ∞
0

λ(τ)

[∫ ∞
σ=0

∫ ∞
ν=0

N∑
j=1

bjω(σ)

(
1 +

N∑
k=1

γk(ν)

)
ej(t− ν − σ − τ)dνdσ

+

N∑
k=1

∫ ∞
ν=0

γk(ν)u(t− ν − τ)dν

]
dτ

These ingredients will now be combined to form the objective for the informed
traders.

5.3. The informed trader’s objective. Expressing the informed trader’s actions
in terms of the filters expressing the value process in equation (20), the price process
in (26), and the order flow process from (25) which includes the public information
process, we can write the time-domain objective (19) for informed trader i as

max
{biω,γi}

E

∫ ∞
0

e−rt

(∫ ∞
τ=0

φ(τ)

N∑
j=1

ei(t− τ)dτ

(27)

−
∫ ∞
τ=0

λ(τ)

[∫ ∞
σ=0

∫ ∞
ν=0

N∑
j=1

bjω(σ)

(
1 +

N∑
k=1

γk(ν)

)
ej(t− ν − σ − τ)dνdσ

+

N∑
k=1

∫ ∞
ν=0

γk(ν)u(t− ν − τ)dν

]
dτ

)

×

∫ ∞
τ=0

bi,ω(τ)ei(t− τ)dτ +

∫ ∞
τ=0

γi(τ)

 N∑
j=1

∫ ∞
σ=0

bj,ω(σ)ej(t− τ − σ)dσ + u(t− τ)

 dτ

 dt

This objective is nontrivial, because the choice of the optimal action each period
is conditioned on information, which includes the history of endogenous actions.
As in the static model, the solution is more straightforward if the objective is first
converted to frequency domain form, with the choice variables converted from time-
domain period-by-period actions to the choice of optimal filters in the frequency
domain.10 I next develop the recipe for converting the objective to frequency do-
main form.

6. Optimizing in the frequency domain

Whiteman [32] constructed a discrete time model and then converted the objec-
tive itself into z-transform form. The optimization was then over linear operators
or filters that were found via a variational derivative of the transformed objective.11

This was achieved by imposing the constraint that the controls must be a linear

9Again, it should be noted that the linearity of the price process here is an assumption; as
previously noted the validity of this assumption for existence has been explored in previous papers
such as [9]; the necessity of linear pricing in the standard Kyle model was established in [3].

10The equivalence of these formulations was explored in [9].
11An earlier instance of the method is in Davenport and Root [15].
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filter of the information, and taking the expectation of the objective prior to op-
timizing over those filters; this is the extension of the similar operation that was
carried out in going from equation (3) to equation (4) in the static model. However,
it is essential to reduce the covariance function of the fundamental processes—the
white noise fundamentals—to a scalar covariance matrix. In continuous time, the
equivalent operation is to make the fundamental covariance function Rx(t) a Dirac
δ-function.

If the fundamental processes are serially uncorrelated, as is the case here by the
assumption that the fundamental processes are white noise, then the expectation of
an objective like (27) leaves an integral in which the integrand consists of products
of functions. Fourier transforming these objects then yields a convolution in the
frequency domain, and the variational derivative of these convolutions can then be
calculated. Proceeding in this way with abstract functions f and g,∫ ∞

0

e−rtf(t)g(t)dt =

∫ a+i∞

a−i∞
F (s)G∗(r − s∗)ds

where the notation G∗ signifies the complex conjugate transpose of G, G∗(r−s∗).12

the r − s∗ term captures discounting, and where the integration is along a strip
parallel to the imaginary axis in which Re(s) = a, where the functions F and G
are analytic in the right half plane—that is, F and G have no poles or singularities
in the region Re(s) > −r, and with a small enough to avoid poles and thus yield
convergence, that is, a < r.13 There are two parts to the integrand: the “causal”
part F (s) and the “anti-causal part” G∗(r − s∗), reflecting the inner product that
is expressed in the objective.

6.1. The informed trader’s problem. Applying this method to the informed
trader’s problem, the transformed objective will be a function of the value process
filter V (s), the public information process filter O(s), the pricing filter Λ(s), and
the informed trader’s order flow Xi(s). The transform of the objective (27) is then

(28) max

∫ a+i∞

a−i∞
(V (s)− Λ(s)O(s))X∗i (r − s∗)Rds

where the causal and anti-causal parts reflect the inner product that is expressed
in the objective, and where R is the covariance matrix function of the Dirac-δ
fundamentals ei(t) and u(t).14 To keep the model tractable, I will assume as in [9]
and [28] that the noise trade process is uncorrelated with the fundamental value
and signal processes, so the covariance function R is block diagonal:

(29) R =

(
Re 0
0 Ru

)
.

The internal pieces of Xi and V , Λ, and O can now be broken out. The causal
and anti-causal pieces (V − ΛO and X∗i respectively) are such that the Fourier
transform of a sum is the sum of the Fourier transforms. In discrete time the
convolution of functions of the lag operator translates into multiplication of func-
tions in the z-domain. This also holds true in the continuous time setting: let

12For a concrete example in which this integration is calculated, see the proof of Lemma 9 in

Appendix B.
13Notice that as in the discrete time case discounting weakens the constraints on poles.
14Again, see [23] p. 218 or [20] p. 209.
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g(t) =
∫∞

0
h(τ)m(t−τ)dτ , and consider the Fourier transform of

∫∞
0
f(σ)g(t−σ)dσ.

Then it is immediate that

F (s)G(s) = F (s)(H(s)M(s)).

With this result in hand we can write the Fourier transformed objective (28) with
the explicit decomposition of the price process. Also, Bi(s) is the Fourier transform
of the filter biω(t); Γi(s) is the Fourier transform of γi(t), and H is the Fourier

transform of 1 +
∑N
j=1 γj(t), so that

(30) H(s) = 1 +

N∑
i=1

Γi(s).

analogously with equation (6) in the static model. With these ingredients trader
i’s transformed order flow filters are a vector of transforms

(31)
(
B1Γ1 . . . Bi(1 + Γi) . . . BNΓN

)
with each element corresponding to the filters operating on the separate fundamen-
tal processes ej(t); the extra term in the ith element adds i’s direct operation on
his own signal. Similarly, the price process transform consists of the elements(

ΛB1H . . . ΛBNH ΛH
)

operating on the individual fundamental processes ej(t) and the noise trade process,
and where the total order flow by all agents is captured by adding up the individual
transforms in (31) and using the compact notation in (30). Finally, Φi is the Fourier
transform of the signal process that informed trader i sees, and Φ is the vector of
these signals, which sum to the value process of the stock.

Combining these ingredients yields the s-transform of the objective (27),
(32)

max
{Bi,Γi}

−
∫ a+i∞

a−i∞
tr




Φ−B1HΛ
...

Φ−BNHΛ
−HΛ

(Γ∗iB∗1 · · · (1 + Γ∗i )B
∗
i · · · Γ∗iB

∗
N Γ∗i

)
R

 ds

which parallels equation (7) of [9].15

6.2. The informed trader’s first-order condition for Bi. Following the steps
in [9], the first-order conditions of the s-transformed objectives can be stated. First,
the notation

A∗

denotes an arbitrary function is the s-domain that is anti-causal, that is, A∗(s) = 0,
for s in the right half-plane.

15The notation extends to the more general situation in which there are multiple assets. In
that case, the value process v(t) is a M -vector defined by

v(t) =

∫ ∞
0

φ(τ)e(t− τ)

with the fundamental N -dimensional vector process e(t − τ), and φ(τ) a matrix filter with M

rows, one for each asset. In that case the s-transform Φ of φ is also a matrix. In that case, each
informed trader i now submits a vector of trades, with bi(τ) a M × 1 vector that takes account of
the influence of his signal on each of the M stocks.
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Focusing on the Bi first-order condition, and assuming no cross-correlation of
information, the first-order condition for Bi is[

(Φ−BiHΛ) (1 + Γ∗i )−Bi(1 + Γi)Λ
∗H∗

]
σ2
ie = A∗.

In the uncorrelated case the elements are all scalars and will commute; the solution
methods for continuous-time Wiener-Hopf equations outlined in Kailath, Sayed and
Hassibi section 7.A can now be used. Gather terms to restate the equation as

Bi

[
ΛH(1 + Γ∗i ) + (1 + Γi)H

∗Λ∗
]
σ2
ie = Φ(1 + Γ∗i )σ

2
ie +A∗

Now propose a factorization

GiG
∗
i ≡ ΛH(1 + Γ∗i ) + (1 + Γi)H

∗Λ∗

where by standard results Gi is analytic and invertible. Then the solution is

(33) Bi =
{

Φ(1 + Γ∗i )G
∗
i
−1
}

+
G−1
i

where the projection operator {·}+ is defined by

{F (s)}+ = 0, Re(s) ≤ 0

Some interpretation of (33) is possible. The solution for Bi is the s-transform
analogue of a projection coefficient. There are two elements in the “numerator”
or covariance part of this projection coefficient: Φ, the filter characterizing the
informed trader’s information, and 1 + Γi. As in the static setting, Γi is itself (the
negative of) a generalized projection coefficient of the informed trader’s order flow
filter on his private signal against the total order flow.

The “denominator” of (33) is the analogue of the variance of that part of the
price process that is driven by this forecast error. The solution for Bi in (33) is
therefore the forecast error of the projection of the informed trader’s information
against the net information in total order flow.

Before developing the first-order condition for Γi the first-order condition for the
market maker will be developed. That condition will be applied to simplify the
informed trader’s problem.

6.3. The market-maker’s objective. The market-maker strives to minimize the
forecast error variance of price conditional on order flow:

max
{Λ}
−
∫ a+i∞

a−i∞
tr




Φ−B1HΛ
...

Φ−BNHΛ
−HΛ

(Φ∗ − Λ∗H∗B∗1 . . . Φ∗ − Λ∗H∗B∗N −Λ∗H∗
)
R

 ds

with first-order condition

(34)
(
−H∗B∗1 . . . −H∗B∗N −H∗

)
R


Φ−B1HΛ

...
Φ−BNHΛ
−HΛ

 = A∗

where the matrices have been transposed under the trace operator. Also, the two
separate terms of the first-order condition have been consolidated into a single one
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by taking the conjugate-transpose of the second term. Defining the function J via
the factorization

(35) J∗J ≡
(
B∗1 . . . B∗N 1

)
R


B1

...
BN
1

 =
(
B∗ I

)
R

(
B
I

)
= B∗ReB +Ru.

it is possible to write the first-order condition as

H∗J∗JHΛ = H∗
(
B∗ I

)
R

(
Φ
0

)
+A∗ = B∗ReΦ +A∗.

where in the last step the block-diagonal structure of R has been used. Note also
that the filter characterizing the total order flow process is JH.

Multiplying both sides by H∗−1,

(36) J∗JHΛ = B∗′ReΦ +A∗

with solution

(37) Λ = H−1J−1

{
J∗−1B∗′R

(
Φ
0

)}
+

The interpretation of the solution in (37) is straightforward. The total order flow
process process is implicitly defined by the filter J . The solution for Λ is then the
s-transform analogue of the projection coefficient of the true value process on total
order flow.

We now return to the first-order condition for Γi, which makes use of the market-
maker’s first-order condition (34).

6.3.1. The informed trader’s first-order condition for Γi. The first-order condition
for Γi is

(
B∗1 . . . B∗N 1

)
R


Φ−B1HΛ

...
Φ−BNHΛ
−HΛ

(38)

+
(
−Λ∗B∗1 . . . −Λ∗B∗N −Λ∗

)
R



B1Γi
...

Bi(1 + Γi)
...

BNΓi
Γi


= A∗(39)
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Substituting from the market-maker’s first-order condition (34), the first term drops
out, yielding

(
−Λ∗B∗1 . . . −Λ∗B∗N −Λ∗

)
R



B1Γi
...

Bi(1 + Γi)
...

BNΓi
Γi


= A∗

Eliminating the Λ∗ term yields

(
B∗ I

)
R



B1Γi
...

Bi(1 + Γi)
...

BNΓi
Γi


= A∗.

Using the block-diagonal structure of R yields

(40) J∗JΓi = −B∗Re



0
...
Bi
...
0

+A∗

with solution

(41) Γi = −J−1


J∗−1B∗′Re



0
...
Bi
...
0




+

As was pointed out above, the solution (41) is the s-transform analogue of (the
negative of) the projection coefficient of the informed trader’s filter on his private
information against the information in total order flow.

This fact can be used to interpret the informed trader’s order flow strategy.
Examining the informed trader’s frequency domain objective in (32), the trader’s
order flow process is characterized by the vector of the filters(

B1Γ1 . . . Bi(1 + Γi) . . . BNΓN
)

acting on the vector of processes
(
e1(t) . . . eN (t) u(t)

)′
; the Γi terms express

the projection on the information in price. Interpreting Γi as negative—as was
the case in the static example—this projection is subtracted from direct trade
process on the private information itself, that is from the filter Bi acting directly
on the process ei(t). The interpretation is that the informed trader knows that
any information the market makers can infer about his private information will be
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incorporated in price and thereby its profit potential neutralized. The informed
trader thus trades only on the residual, unforecastable part of his private signal.

The formulas for Bi, Γi, and Λ can now be solved in examples. The main
example posits that the value process follows an Ornstein-Uhlenbeck process, the
continuous-time analogue of an autoregressive process.

7. Some propositions about the order flow and price processes in
equilibrium: Inconspicuousness

As also demonstrated in [9], [8] and [28], the forecast error characterization of the
trading strategies has broader implications. First, because the informed traders do
not want to be detected by the market makers or by their rivals, they hide behind the
noise traders. This requires that the order flow process have no dynamic structure
that would allow market makers to infer the informed trades. Therefore, the total
order flow will have the same stochastic structure as the noise trade process.

Second, the price process must not have a dynamic structure that is fundamen-
tally different from the dynamic structure of the fundamental asset value process,
as this would allow the informed traders to arbitrage against it purely based on
filtering the dynamic structure.

Proposition 5. The total order flow process filter

JH

is a constant matrix. Therefore order flow has the same dynamic structure as the
filter for the noise trade process u(t).

Proof: Add up the Γi equations (40) across traders, yielding

J∗J
∑
i

Γi = −B∗Re
∑
i



0
...
Bi
...
0

+A∗

Recalling the definition H ≡
∑
i Γi + I and using the vector expression B,

J∗J(H − I) = −B∗ReB +A∗.

From the definition of J in equation (35),

J∗J(H − I) = −(J∗J −Ru) +A∗

where Ru is the covariance function for the noise trade process. Also recall that it
is assumed that the covariance functions for the fundamental processes are Dirac
δ functions, so Ru is a constant matrix. Because no further filter is applied to the
noise trade process, noise trade is white noise.

Algebraic manipulation then yields

J∗JH = Ru +A∗.

Order flow is then

JH =
{
J∗−1Ru

}
+
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Because Ru is a constant matrix, the projection operator eliminates all poles in the
negative half plane. But J was constructed via factorization to have poles only in
the positive half plane, and therefore the projection must be a constant. 2

Proposition 6. The price process filter

JHΛ

has the same pole structure as the value process filter Φ, and therefore the price
process has the same dynamic structure as the value process.

Proof: The filter for the price process is the order-flow filter JH multiplied by
the pricing filter Λ.

Multiplying the first-order condition for Λ, (36) by J∗−1 and applying the anni-
hilator yields the equation for the price process,

JHΛ =
{
J∗−1B∗ReΦ

}
+
.

By Lemma 9 (see the Appendix), the right hand side is the product of a constant
matrix and Φ. Thus,

(42) JHΛ = CReΦ.

where C is a constant matrix J(r + ρ)−1B(r + ρ). 2

7.1. Acceleration. As was shown in [28] and [9], the informed traders trade in-
tensely on their information, in the sense that the filter on the fundamentals of their
private signals has a pole structure such that their order flow on private signals is
less serially correlated than the asset value itself. The proof of this was set out
in [28] for the discrete time multi-asset case. The proof there has two main parts.
The first part is to establish that the poles exceed the poles of Φ. This is done by
showing that the equilibrium mapping of a conjectured pole structure for Bi results
in a set of larger poles. The second part follows by showing that the number of
poles increases by one for each iteration of the mapping, and that therefore there
must be infinitely many in equilibrium.16

8. Discussion and related literature

The results here are a little more general than some of the literature in the
following sense. In Danilova [14] for example, which has dynamic evolution of
the fundamental value and a single informed trader, the hiding idea is termed
inconspicuousness. But in that model, the asset fundamental value process and the
noise trade are both Brownian processes with jumps, so the dynamic structure or
order flow is no different than the price process. Here, by contrast, the noise trade
is serially uncorrelated while the fundamental value process is serially correlated.
Therefore in order to hide, the informed traders must adjust not just the magnitudes
of their trades, but their dynamic pattern.

16To clarify terminology, a pole can be intuitively viewed as the inverse of an autoregressive

coefficient in discrete time, and is therefore (for stationary processes in the discrete-time setting
of [28]) greater than the square root of the discount factor in absolute value. In discrete time

poles correspond to points in the right half plane. As the number of poles is infinite, this requires

that the poles converge to infinity. It can then be argued that arbitrary rational functions can be
approximated by the sums of such pole terms, and also characterized by the pattern of weights

on those pole terms.
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8.1. Relationship with the order-splitting literature. The reason for the or-
der flow result is related to the result of Back and Baruch [4]: the informed traders
pool with the noise traders, that is, they hide their trades. The Back and Baruch
model establishes that breaking up large block orders into a sequence of small ones
is optimal, but the result here emphasizes that it is not the breaking up of the or-
ders that is crucial, but the fact that the orders are stochastically indistinguishable
from the noise trades that matters.

In this sense the model also suggests that there is not an important difference be-
tween dealership markets and other market structures such as a limit order market,
buttressing Back and Baruch’s central finding.

Back and Baruch [4] set out a model in which informed traders can post orders
of any size; in equilibrium they order one share at a time, with large (block) orders
being expressed as a high rate of single-share orders. The result is that informed
traders pool with uninformed traders. The results here are equivalent: informed
traders want to appear like noise traders, otherwise their information can be ex-
tracted by market makers. Back and Baruch demonstrate the equivalence of their
market structure with one in which there is an open (public) order book with limit
orders, in which informed traders put in limit orders.

In particular, Back and Baruch note that in a floor-trading model—that is, one
with competitive market makers, as in the Kyle [24] model, the informed traders
might submit a large order, but it must be structured (via a mixed strategy) so
that market makers cannot clearly identify it as an informed order as would be the
case in a separating equilibrium:

When orders are worked, liquidity providers on a floor exchange
can of course condition on the size of an order, but they cannot
condition on the size of the demand underlying the order—they
cannot know whether there will be more orders from the same
trader in the same direction immediately forthcoming. Thus, in
a pooling equilibrium on a floor exchange, ask prices are upper-tail
expectations—expectations conditional on the size of the demand
being the size of the order or larger—precisely as in a limit-order
market. This is the reason a pooling (worked-order) equilibrium
on a floor exchange is equivalent to a block-order equilibrium in a
limit-order market. ([4], p. 2)

8.2. Relationship to the speed of revelation literature. The high intensity
of trading relative to information arrival result matches the similar result from the
discrete-time models in Bernhardt, Seiler and Taub [9] and [28], also expressed by
the infinitely long pattern of poles. There is a related result in the paper of Chau and
Vayanos [13]. The Chau and Vayanos model uses a different information structure:
market makers can observe firm value contemporaneously, but cannot forecast its
evolution, while the informed trader can forecast. In their model, which has a single
informed trader in an infinite horizon setting with stationary asset value evolution
and continuous information arrival, trading intensity is accelerated relative to the
arrival rate of information, but because of the model structure the acceleration
results in full and immediate revelation of the informed trader’s information.
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9. The dynamic model with a large shareholder

The large shareholder chooses the filter θ1(·) on his private signal in order to
alter fundamental value:

vt =

∫ ∞
0

(
φ(τ)

∑
ei,t−τ − θ1(s)φ(τ)e1(t− τ)

)
dτ

There are no intrinsic restrictions on the filter, other than that it must by analytic,
i.e., it can be backward looking but not forward looking. Thus, the filter can be
designed so that the stochastic structure in the underlying shocks is altered to be
more or less persistent, and to have additional structure such as zeroes that make
the price process noninvertible in some appropriate sense.

The penalty on the large shareholder’s action is

E

[(
C1/2

∫ ∞
0

θ1(s)φ(s)e1,t−sds

)2
]
,

that is, the amplification is treated as a penalty process.

9.1. The large shareholder’s problem. There are N informed traders. Each of
the informed traders privately observes one signal process, represented here by Φi.
Trader 1 is the large shareholder who has not only has private information about
one of the processes that affect fundamental value, he can affect that process. He
chooses a filter, Θ1, to potentially alter not only the magnitude of the fundamental
process Φ1, but also potentially its dynamic (i.e. autoregressive) structure.

The informed shareholder’s objective is a modification of the objective in the
stock market model up to now: instead of

max
Xi

∫ a+i∞

a−i∞
(Φ(s)− Λ(s)O(s))X∗i (r − s∗)Rds

where O is total order flow (the sum of informed trades
∑
i xit and noise trade

orders ut), and where Φ(s) is the (vector) value process Laplace transform, the
valuation process reflects the action of the large shareholder:

(43) max
X1,Θ1

∫ a+i∞

a−i∞

(
Φ(s)−Θ1(s)Φ1(s))− Λ(s)O(s))X∗1 (r − s∗)R

− C

2
Θ1(s)Φ(s)Φ∗(r − s∗)Θ∗1(r − s∗)

)
ds

For compactness I will denote the value process after manipulation by the large
shareholder by Φ̃. The large shareholder acts on his private signal which has filter
Φ1, so the modified value process filter might be

Φ̃ =
(
Φ1(s)−Θ1(s)Φ1(s) Φ2(s) . . . ΦN (s)

)′
that is, only the first component of firm value is directly affected by the actions,
which is done via his choice of Θ1, the Laplace transform of the large shareholder’s
filter on his fundamental signal Φ1(s); C is a constant measuring the cost of the
action filter Θ1.
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Breaking out the pieces of the objective yields

(44)

max
{B1,Γ1,Θ1}

−
∫ a+i∞

a−i∞
tr

{
(Φ1 −Θ1Φ1)−B1HΛ

...
ΦN −BNHΛ
−HΛ

((1 + Γ∗1)B∗1 · · · Γ∗1B
∗
i · · · Γ∗1B

∗
N Γ∗1

)
R

− C

2
Θ1Φ1Φ∗1Θ∗1

}
ds

for the informed large shareholder.

9.1.1. The large shareholder’s first order conditions. The first-order condition for
Bi will now have some extra terms due to the penalty function, and there is an
entirely new first-order condition for Θ1.

Assuming no cross-correlation of information, the first-order condition for B1 is

(45)
[

((Φ1 −Θ1Φ1)−B1HΛ) (1 + Γ∗1) − B1(1 + Γ1)Λ∗H∗
]
Re = A∗

This first-order condition is a straightforward modification of the corresponding
condition in the pure trading model: defining G1 by

(46) G1G
∗
1 ≡ [ΛH(1 + Γ∗1) + (1 + Γ1)H∗Λ∗]R

the solution is

(47) B1 = G−1
1

{
G∗−1

1 (Φ1 −Θ1Φ1)(1 + Γ∗1)
}

+

Thus, the first-order condition for filtering private signals is identical in structure
to that for the pure exchange model of [9] and [28]. That is, the large shareholder’s
production-control decisions appear here only as a modification of the effective
signal process. In this sense the production control decision is separable from the
trading strategy decision.

If Θ1 is a scalar constant, then the overall equilibrium will be like that of the
pure exchange model, with the large shareholder amplifying the unforecastable part
of the fundamental. On the other hand, if Θ1 has a nontrivial filter structure, then
the production-control decisions will affect the large shareholder’s trading strategy
filter as well.

9.1.2. The first order condition for Γ1. The first order condition for Γ1 is similar:
it is the same as for the informed traders who are not large shareholders, but with
the value process replaced by the large-shareholder-modified process.

9.1.3. The first order condition for Θ1. I now turn to the first order condition for
Θ1, the large shareholder’s amplification factor. It already emerged in the static
model that the large shareholder amplifies the variance of his component of firm
value. I now show that he also alters its time series structure.

The first order condition is (with off-diagonal terms dropping out due to the
trace operation)

(48) −Φ∗1
(
B1(1 + Γ1)

)
Re − (Θ1Φ1Φ∗1 + Φ1Φ∗1Θ∗1)

1

2
C = A∗
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Consolidating via the conjugate transpose yields

(49) −Φ∗1
(
B1(1 + Γ1)

)
Re −Θ1Φ1(s)Φ∗1C = A∗

Dividing out Φ∗ then yields

−
(
B1(1 + Γ1)

)
Re −Θ1Φ1(s)C = A∗

The solution of the first-order condition for Θ1 (49) is then straightforward:

Θ1 = −C−1B1(1 + Γ1)RΦ−1
1

When we substitute this into the objective, the Φ−1 term cancels the Φ term in the
objective, leaving

Φ̃ = Φ +B1(1 + Γ1)C−1.

As with the static model, the term that is added on is simply the unforecastable
part of the large shareholder’s trade!

It is also worth noting that even though the model was not set up to require
that the large shareholder’s ability to affect the fundamental is proportional to his
holdings or trades, this nevertheless emerges endogenously, that is, Θ is proportional
to B1, the large shareholder’s trade on his private information.

9.1.4. Demonstrating the non-constancy of Θ. To demonstrate the non-constancy
of Θ, I make the following assumptions:

Assumption 7. (i) The fundamental process Φ has only one pole
(ii) The correlation between the fundamental and the noise trade process is zero,

that is, R is diagonal
(iii) There is only one stock
(iv) There is only one privately informed trader, namely the large shareholder

These assumptions are all standard in relation to the simplest Kyle models. If
Θ1 were in fact constant, then the large shareholder would simply amplify the
fundamental process as in the static model, that is, the fundamental would become
(1−Θ1)Φ, with Θ1 negative.

Proposition 8. Let Assumptions 7 be met. Then Θ1 is not a constant and there-
fore (1 − Θ1)Φ1 is not proportional to Φ1, that is, the large shareholder alters the
autoregressive structure of the firm’s fundamentals.

Proof: The agenda is to demonstrate that (1 + Γ1)B1Φ−1
1 is not of order Φ1.

Recalling the solution for B1, we have

G−1
{
G∗−1(1−Θ1)Φ(1 + Γ∗1)

}
+

(1 + Γ1)

Now apply the annihilator lemma, Lemma 9, yielding

∼ G−1Φ(1 + Γ1)

To establish that this expression not of order Φ1, we can equivalently demonstrate
that ∼ G−1(1 + Γ1) is not a constant. Recalling the definition of G from equation
(46),

(50) |G1|2 = G1G
∗
1 ≡ [ΛH(1 + Γ∗1) + (1 + Γ1)H∗Λ∗]
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Thus,∣∣(1 + Γ1)−1G1

∣∣2 = (1 + Γ1)−1 (ΛH(1 + Γ∗1) + (1 + Γ1)H∗Λ∗) (1 + Γ∗1)−1

= (1 + Γ1)−1ΛH +H∗Λ∗(1 + Γ∗1)−1

Now recall that for N = 1, that is, the assumption that there is only one informed
trader, namely the large shareholder, H = 1 + Γ1; thus, assuming we have commu-
tativity, this expression reduces to

Λ + Λ∗ ≡ |L|2

We know that Λ is of order Φ from Proposition 6; this sum therefore defines a
process L(s) that has nontrivial zeroes as well as the same poles as Φ. Thus,
L(s) is the product N(s)Φ(s), and N(s) is a non-constant function. Therefore
G−1(1+Γ1) = L−1 is a non-constant function, and so G−1(1+Γ1)Φ is proportional
to N(s)−1, which is not proportional to Φ. 2

The result extends if there are multiple informed traders with only one large
shareholder.

Thus, we can conclude that the large shareholder dynamically obfuscates: he not
only amplifies the fundamental value process, he alters its time series structure by
the market makers’ forecast error.

Finally, it should be noted that the analysis above suppresses the interaction
between Θ1 and B1 in the first-order conditions. However, it is possible to state a
joint first order condition in vector form: combining (45) and (49) yields the vector
condition, we have

(51)

(
HΛ(1 + Γ∗1) + (1 + Γ1)Λ∗H∗ Φ1(1 + Γ∗1)

(1 + Γ1)Φ∗1 CΦ1Φ∗1

)(
B1

Θ1

)
=

(
Φ1(1 + Γ∗1)

0

)
+A∗

Note the endogenous terms on the right. The key observation though is that the
coefficient matrix on the left is Hermitian and so can be factored, making possible
a conventional solution of the model. This extension is carried out in Appendix E,
and an example is computed.

Plotting the spectral density of the Φ and (1−Θ)Φ filters in the example shows
that it amplifies high frequencies more than low frequencies—that is, it actually
reduces the persistence of the fundamental. The intuition for the emphasis on high
frequencies is that the large shareholder wants to masquerade as a noise trader (that
is, to become even more inconspicuous), and the noise trade has zero persistence.
Thus, the amplification factor moves the fundamental in the direction of white noise.
Note also that the amplification factor increases the level of the spectral density at
every frequency—that is, the overall volatility of the fundamental is increased, as
the analytical model demonstrates.

10. Conclusion

The following phenomena were demonstrated:

(i) The large shareholder amplifies the unforecastable part of the fundamental
in order to increase his trading profits.
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Figure 1. Plot of the spectral densities
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This figure plots the spectral densities of the Φ process filter (1 − .93z)−1 (dashed line), the

insider’s amplification filter (1 − Θ1) (dotted line) and the net process filter (solid line). The

amplification filter amplifies high frequencies more than low frequencies, thus reducing the

persistence of the fundamental.

(ii) In a dynamic setting, informed traders jointly behave so as to be inconspic-
uous, so that total order flow has the autoregressive structure of the noise
trade, and price has the autoregressive structure of the fundamental value
process.

(iii) In a dynamic setting, the large shareholder alters the autoregressive struc-
ture of the firm’s fundamental value process, that is, he dynamically obfus-
cates, and because this alteration is based on the market makers’ forecast
error process, it does not increase the amount of information available to
the market.

Given that the large shareholder’s trading profits can be enhanced by his al-
teration and amplification of the private signal, there is an incentive to acquire
private information, along the lines set out in [7]. One usually unspoken element of
private information models is the reason for the privacy or unobservability of the
information. It is evident here that there are strong incentives to acquire private
information and also to keep it private.

A central feature of business cycles is that they are persistent relative to the
shocks that induce them. Successfully explaining this persistence requires explain-
ing how firms fail to adjust quickly to shocks. The model here suggests that agents
in possession of private information about fundamental shocks will not only ob-
fuscate that information by amplifying the unforecastable part, they will add to
the obfuscation by deliberately altering its autoregressive structure. Thus, if there
is any uncertainty about aggregate nominal processes along the lines of [25], such
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obfuscation will actually exacerbate the associated signal extraction problem, and
with it, deliver the aggregate fluctuations we observe.

Appendix A. Fourier transforms of continuous-time processes

The Ornstein-Uhlenbeck process is the continuous-time analogue of the discrete
autoregressive process:

dx = axdt+ dz

The integral representation is

x(t) =

∫ t

−∞
ea(t−s)dz(t)

The Fourier transform of ea(t−s) is
1

iω − a
and the Fourier transform of dz (which corresponds to white noise) is the δ function.
(A reference is Igloi and Terdik [22], p. 4.) The spectral density is

1

a2 + ω2

The Fourier transform (and corresponding Laplace transform) resemble the pole
forms 1/(z − a) in discrete time models. The building block in the s-domain is
therefore also rational functions, except that causality is associated with poles in
the left half plane instead of the unit circle.

Observe that a = 1 yields the Fourier transform of a standard Brownian mo-
tion; thus, with discounting it isn’t a problem to translate standard discrete-time
stationary models to this setting, and vice versa.

Appendix B. Practical details of spectral factorization and
annihilator operations in continuous time

In this appendix I examine how factorization and the annihilation operator work
in practical examples. I begin by briefly recapitulating an example from Kailath,
Sayed and Hassibi, p. 263-264. Kailath, Sayed and Hassibi posit a model which
has the following Wiener-Hopf equation:

(KSH 7.A.4) K(s)Sy(s) = Ssy(s)esλ −G(s)

Here K(s) is the Laplace transform (s-transform) of the unknown filter that is to be
found; G(s) is the Laplace transform of a function g(t) that is a purely anticausal
function, that is, a function that is analytic on the left half plane only and zero in
the right half plane, but which is otherwise arbitrary, corresponding to the principal
part function

∑−1
−∞ in the discrete time setting: g(t) = 0, t > 0; Ssy(s) and Sy(s)

are the Laplace transforms of variance and covariance functions

Sy(s) = L{Ry} Sys(s) = L{Rys}
with

Ry(τ) ≡ E[y(t)y(t− τ)] Rys(τ) ≡ E[s(t)y(t− τ)]

Note that Kailath, Sayed and Hassibi have some contrasting notation: process s(t)
is in boldface, and the argument of the Laplace-transformed function s, which is
completely different. Thus, Sy is the Laplace transform of the observed process,
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and s(t) is the signal process that the observer wants to extract; Rys is then the
covariance function between the observed and signal processes.

The exponential term appears in the Wiener-Hopf equation because the original
equation is shifted:

Rsy(t+ λ) =

∫ ∞
0

k(τ)Ry(t− τ)dτ, t > 0

which captures the idea of time-lagged observations.
To solve the problem ([23] 7.A.4), first factor Sy. Abstractly, this factorization

is

(KSH 7.A.2) Sy(s) = L(s)RL∗(−s∗)

where R is a positive constant, and L(s) is causal, that is, both L and L−1 are
analytic on the right half plane.

Now write the solution:

(KSH 7.A.7) K(s) = L(s)−1
{
L∗(−s∗)−1

R−1Sxy(s)esλ
}

+

The remaining agenda is to carry out a factorization for a practical problem and
to demonstrate how the annihilation operation works in that practical setting.

Kailath, Sayed and Hassibi posit a signal process with Fourier transform spectral
density

Ss(f) = F
{
e−α|t|

}
=

2α

α2 + 4π2f2

Note that there is a distinction between the Fourier and Laplace representations.
Defining s ≡ 2πif , the equivalent bilateral Laplace transform is

Ss(s) = L
{
e−α|t|

}
=

2α

α2 − s2

The noise process v(t) is white noise (not the same as a Brownian process!) which
has a flat spectrum:

Sv(s) = 1

and the sum of the signal and noise, y(t) = s(t) + v(t), is (because the Laplace
transform of a sum is the sum of the Laplace transforms)

Sy(s) = Ss(s)+Sv(s) =
2α

α2 − s2
+1 =

2α

α2 − s2
+1 =

s2 − α2 − 2α

s2 − α2
= L(s)RL∗(−s∗).

The denominator of this expression is the product (s−α)(s+α). Restate the entire
expression as a product:

s+
√
α2 + 2α

s+ α

s−
√
α2 − 2α

s− α
so that

L(s) =
s+
√
α2 + 2α

s+ α
.

(Of course this is just one of the potential factorizations.) Note that L is analytic
in the right half plane because its pole, −α, is in the left half plane, and the inverse
is analytic in the right half plane because the zero, −

√
α2 + 2α, is in the left half

plane.
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The final step is to calculate the annihilate. To do this, a partial fractions
calculation must be done. The argument of the annihilator is

s− α
s−
√
α2 + 2α

2α

α2 − s2

Writing out the factors in the denominator, there is a cancellation:

=
s− α

s−
√
α2 + 2α

2α

(α− s)(α+ s)
= − 1

s−
√
α2 + 2α

2α

α+ s
.

Now rewrite this with partial fractions:

=
− 2α
α+
√
α2+2α

s−
√
α2 + 2α

+

2α
α+
√
α2+2α

α+ s
.

The annihilator kills elements that have poles in the right half plane; the first term
will therefore be killed:{

− 2α
α+
√
α2+2α

s−
√
α2 + 2α

+

2α
α+
√
α2+2α

α+ s

}
+

=

2α
α+
√
α2+2α

α+ s
.

Therefore the solution of the Wiener-Hopf equation is

K(s) =
s+ α

s+
√
α2 + 2α

2α
α+
√
α2+2α

α+ s
=

2α
α+
√
α2+2α

s+
√
α2 + 2α

.

This is the Laplace transform for a filter. The actual filter can be obtained by
performing the inverse transform operation.

B.1. A small lemma about the annihilator. The annihilator operator is a
linear operator and therefore can be expressed as an integral ([23], p. 263):

(52) {F (s)}+ =

∫ ∞
0

[
1

2πi

∫
F (p)eptdp

]
e−stdt

The interpretation is straightforward: perform the inverse Laplace transform with
the inner integral (which in conventional situations is integrated along the imaginary
axis). Then perform the one-sided Laplace transform on the result, which picks up
only the part of the function defined for positive t, that is, in the right half plane.
The following small lemma holds, which is a variation of Whittle’s theorem.

Lemma 9. Let F be analytic in the right half plane, and let a > 0. Then{
F ∗(r − s∗) 1

s+ a

}
+

= F (r + a)
1

s+ a

Proof: I will first demonstrate this for a simple version of F , namely F (s) = 1
s+b ,

b > 0—namely when F is also the filter for an Ornstein-Uhlenbeck process. In that
case, the inner integral of (52) is

1

2πi

∫
1

−p+ r + b

1

p+ a
eptdp

Now do partial fractions:

=
1

2πi

∫ ( 1
r+b+a

−p+ r + b
+

1
r+b+a

p+ a

)
eptdp



32 BART TAUB

The integration is along the imaginary axis. This is equivalent (via a Möbius
transform) to integrating around the unit circle. Consequently Cauchy’s theorem
can be invoked: a holomorphic function with a pole in the right half plane integrates
to zero. The pole of the first term in the expression is p+r, and therefore the integral
of the first term is zero. The remaining expression is

1

r + b+ a
e−at

Now take the outer integral.∫ ∞
0

[
1

r + b+ a
e−at

]
e−stdt =

1

r + b+ a

1

s+ a
.

This completes the proof for this simple case.
If f is analytic, then it can be represented in power series form:

f(τ) =

∞∑
k=0

fke
−bkτ .

The s-transform of this function is

F (s) =

∞∑
k=0

fk
1

s+ bk
.

Now proceed as in the proof above for each k. 2

This result is stated and proved in greater generality for matrix systems in [31] us-
ing state space methods. When general compound expressions of the sort {FG∗}+,
where both F and G are analytic, that is, their poles are in the left half plane, are
viewed from a state space perspective, it is clear that the product will be a function
with poles in the left half place inherited from the poles of F and poles in the right
half plane inherited from G. The annihilator removes the latter poles, while the
poles of F survive.

Appendix C. Factoring the coefficient matrix

The coefficient matrix in the matrix representation of the stacked first order
conditions, equation (51), can be written as

(53)

(
(1 + Γ∗1) 0

0 Φ∗

)(
(1 + Γ1)−1HΛ + Λ∗H∗(1 + Γ∗1)−1 1

1 C

)(
(1 + Γ1) 0

0 Φ

)
The internal matrix is then easier to factor because only the upper left element is
nonscalar.

Recalling the definition of H from equation (6), because N = 1, we have that
H = 1 + Γ1, and therefore from equation (53) we have:

(54)(
(1 + Γ∗1) 0

0 Φ∗

)(
Λ + Λ∗ 1

1 C

)(
(1 + Γ1) 0

0 Φ

)(
B1

Θ1

)
=

(
Φ1(1 + Γ∗1)

0

)
+ A∗

and then use the factorization of the inner part:

(55)

(
(1 + Γ∗1) 0

0 Φ∗

)
F̄ ∗F̄

(
(1 + Γ1) 0

0 Φ

)(
B1

Θ1

)
=

(
Φ1(1 + Γ∗1)

0

)
+A∗
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We can invert the outer parts and then the inner parts:

(56) F̄

(
(1 + Γ1) 0

0 Φ

)(
B1

Θ1

)
= F̄ ∗−1

(
Φ1

0

)
+A∗

The cancellation of the (1 + Γ∗1) on the right assumes that this is a scalar and
invertible quantity. The solution is(

B1

Θ1

)
=

(
(1 + Γ1) 0

0 Φ

)−1

F̄−1

{
F̄ ∗−1

(
Φ1

0

)}
+

Now recall from Proposition 5 that 1 + Γ1 = H ∼ J−1. Thus,(
B1

Θ1

)
=

(
c2J 0
0 Φ−1

)
F̄−1

{
F̄ ∗−1

(
Φ1

0

)}
+

where c2 is a constant that can be derived from Proposition 5. Taking this a step
further we have (

B1

Θ1

)
=

(
c2J 0
0 Φ−1

)
F̄−1

{(
F̄ ∗−1

11 Φ
F̄ ∗−1

21 Φ

)}
+

Recalling that Φ(s) is Ornstein-Uhlenbeck (the continuous time analogue of au-
toregressive) 1

s+a , and invoking the annihilator theorem (Lemma 9 in Appendix

B)

(57)

(
B1

Θ1

)
=

(
c2J 0
0 Φ−1

)
F̄−1

(
F̄11(r + a)−1Φ
F̄12(r + a)−1Φ

)
When the algebra is carried further, the Φ terms will cancel from the solution for
Θ1. Only the factor F̄ then influences Θ1 directly. The exact structure of F̄ can
be used to show that Θ1 is not a constant.

Now we can numerically calculate F and the inverses, products and annihilates.
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Appendix D. Extending the Cholesky decomposition to matrices of
rational functions

In this appendix I detail how to extend the Cholesky decomposition from ordi-
nary matrices to rational functions. The agenda is to develop the candidate factor,
but not require that the candidate factor be analytic and invertible.

One begins with a Hermitian n × n matrix H, with elements hij , that is to be
factored. The immediate question is whether to right- or left-factor H:

H = LL∗ left factor or H = R∗R right factor

I will follow the left factor strategy. This is sufficient, even if we want a right
factorization: first observe that if H is Hermitian, then so is the transpose H ′.
Thus,

H ′ = (LL∗)′ = (L∗)′L′

which is a right factorization of H ′, and

H ′ = (R∗R)′ = R′(R∗)′.

which is a left factorization. Thus, to obtain a right factorization of H, we just need
to find a left factorization of H ′ and take the transpose of the result R′. Thus, it is
sufficient to consider the left factorization; the right factor is simply the transpose
of the left factor of H ′.

Next, begin the factorization. Note: this is highly parallel with the development
on the Wikipedia page on the Cholesky decomposition for ordinary matrices. The
algorithm is recursive. In the first step, we have

H1 ≡ H.

At step i of the algorithm there is an intermediate matrix,

Hi =

Ii−1 0 0
0 aii b∗i
0 bi Bi


where Ii is the i-dimensional identity, aii is the ith diagonal entry from Hi, bi is the
(n− i)×1 column vector and the block matrix Bi is the lower right (n− i)× (n− i)
submatrix from H.

When H is a matrix of numbers, then we take the square root of aii, and con-
struct the matrix

Li =

Ii−1 0 0
0

√
aii 0

0 1√
aii
bi In−i


The H2 operation equivalent to the square root is spectral factorization. Thus, we
want to find fi such that

aii = f∗i fi

This is relatively straightforward because by construction aii is a scalar function.
Thus in the spectral factorization case,

Li =

Ii−1 0 0
0 fi 0
0 f∗−1

i bi In−i


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Now define

Hi+1 =

Ii−1 0 0
0 1 0
0 0 Bi − a−1

i bib
∗
i


and

Hn+1 = In

Then
L = L1L2 · · ·Ln.

There is one detail: in the H2 case, how do we know that

Li =

Ii−1 0 0
0 fi 0
0 f∗−1

i bi In−i

 not

Ii−1 0 0
0 f∗i 0
0 f−1

i bi In−i

 ?

In the n = 2 case, we can do the multiplication. First,

H1 = H =

(
h11 h∗21

h21 h22

)
,

L1 =

(
f1 0

f∗−1
1 h21 1

)
and

H2 =

(
1 0
0 h22 − h−1

11 h21h
∗
21

)
with

f1f
∗
1 = h11

Defining g by the factorization

gg∗ ≡ h22 − h−1
11 h21h

∗
21.

Then

L2 =

(
1 0
0 g

)
The factor is then

L = L1L2 =

(
f1 0

f∗−1
1 h21 1

)(
1 0
0 g

)
=

(
f1 0

f∗−1
1 h21 g

)
so

H = LL∗ =

(
f1 0

f∗−1
1 h21 g

)(
f1 0

f∗−1
1 h21 g

)∗
=

(
f1 0

f∗−1
1 h21 g

)(
f∗1 h∗21f

−1
1

0 g∗

)
=

(
f1f
∗
1 h∗21

h21 h∗21f
−1
1 f∗−1

1 h21 + gg∗

)
=

(
h11 h∗21

h21 h22

)
Once this initial factor L is constructed, the Ball-Taub algorithm [2] can be applied
to convert the factor to analytic and invertible form. That algorithm is presented
under that assumption that a preliminary right factor R has been found and the
appropriate adjustment must be made.



36 BART TAUB

Appendix E. Factoring an example

Let us consider a simple example in which the fundamental firm value process is
an ar(1) process and expressed by

Φ(z) =
1

1− az
.

We know from previous reasoning that this will lead to the pricing filter to have
the same structure as the fundamental process, that is,

Λ =
λ

1− az
.

For that reason, the matrix to be factored is

H ≡ F̄ ∗F̄ =

(
Λ + Λ∗ 1

1 C

)
In the following example, a = .93 (so a−1 = 1.075) and C = 1.16. We want to find
a right factor, but the algorithm is set up to find a left factor; we therefore take the
transpose of H and find the left factor, then the transpose of that factor. However,
because of the symmetry of the H we have H ′ = H.

Putting the numbers in and performing an initial factorization yields the left
factor

H =

(
(z−1.470)(z−.680)
(z−1.075)(z−.930) 1

1 1.16

)
Observe that the outside zero of the numerator in the (1, 1) element, which char-
acterize the ar part of the implied process, is larger than thee denominator zero
(1.075), so the persistence arising from the ma part of the implied process will be
lower than that induced by the ar part. The invertible left factor of H, which is
simply the initial candidate factor generated by the Cholesky factorization, is(

.855(z−1.470)
z−1.075 0

.855(z−.93)
z−.680

.296(z−2.686)
z−1.470

)
Multiply by a Blaschke factor from the right:(
.855(z−1.470)
z−1.075 0

.855(z−.93)
z−.680

.296(z−2.686)
z−1.470

)(
− z−.680

1−.680z 0

0 I

)
=

(
− .855(z−1.470)

z−1.075
z−.680
1−.680z 0

− .855(z−.93)
1−.680z

.296(z−2.686)
z−1.470

)
and with cancellation in the upper left element,( .855

.680 (z−.680)

z−1.075 0
.855
.680 (z−.93)

z−1.47
.296(z−2.686)
z−1.470

)
=

(
1.257(z−.680)
z−1.075 0

1.257(z−.93)
z−1.47

.296(z−2.686)
z−1.470

)
which has a zero but no poles. The transpose of this, which is the right factor is,

F̄ =

(
1.257(z−.680)
z−1.075

1.257(z−.93)
z−1.47

0 .296(z−2.686)
z−1.470

)
Because of the zero, additional factorization is needed. First, we calculate the
constituent elements of the Θ matrix (the coefficient matrix from [2]):

A =
(
.68
)

B =
(
−.884 −.468

)
Ω =

(
1.86

)
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yielding

Θ =

(
− .930(z−.494)

z−1.470 − 1.022(z−1.0)
z−1.470

− 1.022(z−1.0)
z−1.470

.459(z−2.025)
z−1.470

)
The invertible factor is

Θ∗F̄ =

(
− .312(z−2.025)

z−.68 − .695(z−1.0)
z−.68

− .695(z−1.0)
z−.68

.632(z−.494)
z−.68

)(
1.257(z−.680)
z−1.075

1.257(z−.93)
z−1.47

0 .296(z−2.686)
z−1.470

)
=

(
.393(z−2.025)
z−1.075 .187

.874(z−1.0)
z−1.075 1.061

)
The inverse is

F̄−1 =

(
4.199(z−1.075)

z−1.075 − .739(z−1.075)
z−2.686

− 3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)
We can write this as

F̄−1 =

(
4.199
z−1.075Φ−1 − .739

z−2.686Φ−1

− 3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)
Inserting this into (57) yields

(58)

(
B1

Θ1

)
=

(
c2J 0
0 Φ−1

)( 4.199
z−1.075Φ−1 − .739

z−2.686Φ−1

− 3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)(
F̄11(r + a)−1Φ
F̄12(r + a)−1Φ

)
Clearly there will be several cancellations of the Φs. This yields

(59)

(
B1

Θ1

)
=

(
c2J 0
0 I

)( 4.199
z−1.075 − .739

z−2.686

− 3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)(
F̄11(r + a)−1

F̄12(r + a)−1

)
Remembering that F̄11(r + a)−1 and F̄12(r + a)−1 are constants, it is evident that
Θ1 (the obfuscation coeffient) is not a constant:

Θ1 = −F̄−1
11 (r + a)

3.452(z − 1)

z − 2.686
+ F̄−1

12 (r + a)
1.552(z − 2.025)

z − 2.686

which is an arma(1,1) transfer function. Thus, the large shareholder adds persis-
tence (mainly through the ar part) to the fundamental process.

We can be more explicit about the solution using the annihilator lemma (using
discrete time):

F̄ ∗−1
∣∣∣
z=a

=

(
4.199(.93−1.075)

.93−1.075 − 3.452(.93−1)
.93−2.686

− .739(.93−1.075)
.93−2.686

1.552(.93−2.025)
.93−2.686

)
=

(
.347 −.138
−.0611 .967

)
Our equation is then

Θ1 = −.347
3.452(z − 1)

z − 2.686
− .138

1.552(z − 2.025)

z − 2.686
= −1.41(z − 1.155)

z − 2.686

which is an arma(1,1) filter. Moreover, it does not cancel with Φ, and so the
effective fundamental process will be

(1−Θ1)Φ =
2.410(z − 1.790)

z − 2.686
Φ.

A slight variant of this example is discussed in the main text. [Figure 1 is for a
slightly different case: the lower right element of the matrix to be factored is 1.1
rather than 1.18.] As the adjustment cost is increased (not shown), the amplification
filter flattens out and shrinks.
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