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I. INTRODUCTION

In a perfect world the field of economics would not be divided into macroeconomics and microeconomics. The
former would be derivable from the latter. Our current understanding of economics is reminiscent of the situation in
statistical physics prior to the 1870s, when the well established field of thermodynamics had to be reconciled with
the new atomic theory. The work of Boltzmann, Gibbs, Maxwell and others eventually achieved this reconciliation,
demonstrating that the “macro” theory of thermodynamics is derivable from the “micro” atomic theory. Economists
are still seeking this kind of unification in their field of study.
The knowledge that economics is still incomplete has led some economists to take extreme positions. There is

a school of thought that maintains that no paper on macroeconomics is worth publishing if it is not demonstrably
grounded on “microfoundations” [1]. At the same time, over the course of the past twenty-five years, there has been
widespread recognition that the very foundations of neoclassical economics – and microeconomics in particular –
are deeply flawed. For example, economic agents do not always have perfect information, buyers and sellers do not
always behave rationally or even in their own best interests, prices are not always set by an auction process, and it
is sometimes not possible to purchase insurance to cover every eventuality. This has led to a backlash against the
“microfoundations” proponents that is best summarized in the words of Paul Krugman [1], “. . .the notion that macro
is rotten but micro is in good shape is, well, only half right.”
As one might expect, the current situation provides some impetus for transplanting ideas from physics to economics,

in the hope that the success of the former subject can be replicated in the latter. This was the goal of a now-famous
meeting at the Santa Fe Institute in 1987 that brought together Nobel laureates in both subjects for this purpose.
The field of “econophysics” was arguably born at this meeting, and much progress has been made in the years since.
An outline of the history of the field is described in Beinhocker’s book on the subject [2], and its recent developments
are broken down by country in a very informative recent special issue of the journal Science and Culture [3].
An observation made by numerous authors (see, for example, Ref. [4]) is that a useful analogy can be made with

the early work of Boltzmann. When molecules collide, they exchange momentum and energy; when economic agents
transact, they exchange wealth. If Boltzmann’s equation describes the former process, then something similar to a
Boltzmann equation should describe the latter. This paper pursues this analogy.
There are, of course, essential differences between molecules and economic agents. For example, in Boltzmann’s

theory of the former, energy is shared amongst the molecules in a Maxwell-Boltzmann distribution. There are
many hypotheses for the distribution of wealth in societies, and, while some of them involve the Maxwell-Boltzmann
distribution in various limits, none are really that simple.
One of the first attempts to quantify the distribution of wealth in a society was made by Vilfredo Pareto in the

early twentieth century [5]. He studied the distribution of land ownership in Italy by plotting the fraction of people
with wealth greater than x versus x. It is clear from the definition of this curve that it is a non-increasing function
of x. If we suppose that wealth is distributed according to the probability density function (PDF) P (w), so that
∫ b

a
dw P (w) is the total population with wealth w ∈ [a, b], then the function that Pareto plotted was

A(w) :=
1

N

∫ ∞

w

dw′ P (w′), (1)

where N :=
∫∞
0 dw P (w) is the total population. Differentiating both sides of this relation yields

P (w) = −N
dA(w)

dw
, (2)

so the PDF may be easily recovered from Pareto’s function.
Pareto found empirically that A(w) was well approximated by

Ap(w) ≈

{

1 if w < wmin
(

wmin

w

)α
otherwise,

(3)

where wmin is a lower bound on wealth, and the exponent α is called the Pareto index. If the total wealth W :=
∫∞
0 dw P (w)w of the population is to be finite, it must be that α > 1. Using Eq. (2), we find the corresponding
Pareto PDF,

Pp(w) ≈

{

0 if w < wmin
αN
wmin

(

wmin

w

)α+1
otherwise.

(4)

The discontinuity of Pp(w) at w = wmin is worrisome, and most economists regard Pareto’s observation as accurate
only in some intermediate range of w.
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FIG. 1. The Pareto index of the US economy: Actual data for the last century, taken from [6].

Pareto’s law is sometimes equated with the “80-20 rule” that asserts that 20% of the population owns 80% of the
land. In fact, this is implied by Pareto’s law for α ≈ 1.16, but it does not, by itself, imply Pareto’s law. More
generally, it is straightforward to show that Pareto’s law can be made consistent with the observation that a fraction
f of the population has a fraction 1− f of the wealth if

α =
log
(

1
f

)

log
(

1−f
f

) . (5)

Note that the “fair” situation with f = 1/2, in which half of the population owns half of the land, corresponds
to α → ∞; the totally “unfair” situation, in which a vanishingly small fraction of the population owns all but a
vanishingly small fraction of the land, corresponds to α → 1 from above. The Pareto index for the economy of the
United States over the last century [6] is shown in Fig. 1.
Although the details of the distribution of wealth in a society are controversial, the appearance of power laws in this

context is widely accepted. Power laws are often associated with self-similarity, which, in this context, is manifested
by the following observation: Denote the population with wealth between w/2 and w by N−, and that with wealth
between w and 2w by N+. If Pareto’s law holds 1, then N−/N+ = 2α, independent of w. That is, the ratio of people
within a factor of two poorer than w to those within a factor of two wealthier than w is independent of w.
Although Pareto’s law has been known for more than a century, its microeconomic foundations are still a subject

of active research. In the mid-1990s, an innovative class of models, called asset exchange models (AEMs), were
introduced for this purpose. In this paper, we analyze a particularly interesting one of these, called the “Yard-Sale
Model” (YSM), originally developed by Chakraborti [7, 8] and his coworkers, analyzed in some detail by Ispolatov,
Krapivsky and Redner [9, 10], and popularized by Hayes [11].
The YSM consists of N economic agents, each endowed with only one quality, namely wealth w. In the simplest

version of this model, w is a positive real number; that is, we do not allow agents to have negative net wealth. This
feature is enforced in the initial conditions, and, as will become clear, the dynamics are designed to preserve it.
The simplest version of the YSM is a closed economic system. The number of agents N remains constant. No

wealth is imported, exported, generated or consumed, so the total wealth of the population W also remains constant.
Wealth can only change hands, from one agent to another. Therefore, agents can become wealthier only at the expense
of other agents becoming poorer.
Neoclassical economics assumes that all agents are fully informed about their options, and all make decisions based

on their own financial best interests. If this were really the case 2, no net wealth would ever change hands. Two
agents might agree to exchange some wealth, but one or the other would refuse to enter into the transaction unless
the wealth exchanged was equal. Economists refer to this state of affairs as perfect pricing. Under the assumption of
perfect pricing, the exchange of wealth would leave P (w, t) unaltered.

1 Here we assume that w/2 > wmin so that we are in the power-law regime.
2 and if there were an absolute notion of value
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FIG. 2. The time loop of the basic Yard Sale Model algorithm: As the algorithm proceeds, we keep track of the
distribution of agent wealth versus time.

As described by Hayes [11] and by Beinhocker [2], perfect pricing does not happen in the real world. Real people
make mistakes, and some people are more clever than others about this. It is unrealistic to expect that a person
wishing to purchase a commodity will conduct an exhaustive search for the lowest price. More often, they will search
only long enough to find an acceptable price. For these reasons, the wealth exchanged in transactions between agents
may differ, and net wealth will change hands. The YSM describes the dynamics of this process.
How much net wealth might be transferred from one agent to another in a given transaction? Let us suppose that

the amount transferred must be strictly less than the smaller of the wealths of the two agents participating in the
transaction. This will ensure that all agents maintain positive wealth. In practice, we shall say that the net change
of wealth is a fraction β ∈ (0, 1) of the wealth of the poorer of the two agents.
Once the net change of wealth has been determined, it remains to decide which agent loses it, and which agent wins

it. Of course, if one agent is assumed to be more clever than all the others, he/she is more likely to be the winner.
Such an assumption will have the effect of quickly concentrating wealth in the hands of the most clever agents. To
give our model economy every benefit of the doubt, therefore, let us assume that the agents are equally clever, so that
either is equally likely to be the winner.
These considerations lead to the simplest version of the YSM, which is described algorithmically in Fig. 2. Because

AEMs are closed systems in which N and W are conserved, we expect that the distribution P (w, t) will approach a
steady state, dependent only on the values of N and W , as t → ∞. Much of the following discussion is devoted to
studying this limit.
In Sec. II we shall make precise many of the concepts introduced above. In particular, we describe the idea, familiar

from kinetic theory, that the PDF of wealth P (w) may be understood as the ensemble average of a corresponding
quantity in the Klimontovich representation. As in kinetic theory, we may begin with the Klimontovich representation
to define multi-agent PDFs, and multi-agent correlation functions.
In Sec. III, we consider the kinetics of the YSM, by relating the time rate of change of the one-agent distribution

to an integral over the two-agent distribution for this model. We derive this relation both by considering the outcome
of a transaction between two agents, and from a master equation approach. We then introduce the random-agent

approximation, which is the analog of Boltzmann’s famous molecular chaos approximation, to derive the analog of the
Boltzmann equation for the YSM. We demonstrate that this equation conserves N and W for a closed economy. We
give an exact solution that is non-normalizable, but we present numerical evidence that it is valid between lower and
upper bounds of wealth. We show that, in the long-time limit, these bounds tend to zero and infinity, respectively,
as the result tends to a certain generalized function. The appendix contains a short detour through the theory of
distributions in order to properly describe this generalized function.
In Sec. IV, we study a particularly interesting limit of the Boltzmann equation in which agents are allowed to stake

only a small fraction of their wealth in any one transaction. In this small-transaction limit, the Boltzmann equation
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reduces to an elegant partial integrodifferential equation that admits to a simple analysis. This equation is, we believe,
new in this context, and one of the principal new results of this paper. We demonstrate that this equation admits
the same conservation laws as the Boltzmann equation, and we present numerical simulations of its evolution. We
show that its time-asymptotic limit is the same generalized function described in Sec. III. We conjecture that this
evolution is approximately valid for many more complicated models of economies, such as the famous Sugarscape
model of Epstein and Axtell [12].
Finally, in Sec. V we show how the partial integrodifferential equation derived in Sec. IV can be extended to include

effects such as production, inflation and taxation. We present the dynamical equations with these features included,
in the small-transaction limit, but we relegate their numerical solution to future work.

II. DEFINITIONS AND REPRESENTATION

A. The one-agent density function

As described in Sec. I, the YSM supposes a population of N agents, each with some wealth w ∈ R+. The one-agent
density function is the PDF of agents in wealth space at time t, and is denoted by P (w, t), so that the number of

agents with wealth w ∈ [a, b] at time t is
∫ b

a
dw P (w, t). If the time variable is clear from the context, we usually omit

it; for example, we might abbreviate P (w, t) by P (w).
The total number of agents is then given by the zeroth moment of P ,

N(t) =

∫ ∞

0

dw P (w, t), (6)

and the total wealth of the agents is the first moment of P ,

W (t) =

∫ ∞

0

dw P (w, t)w. (7)

The average wealth of an agent is then W/N . In a closed economy, N and W are conserved quantities, independent
of time.

B. Klimontovich representation of one-agent density function

We consider a population of N agents with individual wealth wj(t), where j = 1, . . . , N . The Klimontovich

representation of the one-agent PDF is then

PK(w, t) =
N
∑

j

δ (w − wj(t)) , (8)

from which Eqs. (6) and (7) yield N(t) = N and W (t) =
∑N

j wj(t), respectively.
The Klimontovich representation retains the individual wealth of each agent in the population as a Dirac delta.

For most purposes, this is far too much information to be useful. The representation that we would prefer is some
smoothed version of this. We may smooth PK by taking an ensemble average over many different populations of N
agents, each evolving independently. These populations are distinct because their initial conditions may differ and
because their time evolution may be stochastic.
To represent the ensemble average mathematically, we add a (possibly multidimensional) ensemble label σ, so

that wj(σ, t) denotes the wealth of the jth agent in the σth population of the ensemble at time t. For simplicity,
we insist that each population in the ensemble has the same number of agents N , and the same total wealth W =
∑N

j w(σ, t). We follow common usage in statistical physics, and refer to an ensemble constructed with these constraints
as microcanonical. The Klimontovich representation of the one-agent distribution of population σ is then denoted

PK(σ,w, t) =

N
∑

j

δ (w − wj(σ, t)) . (9)
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The ensemble averaged one-agent distribution is then the integral 3 of this over some measure dρ(σ), normalized so
that

∫

dρ(σ) = 1. That is, the smoothed one-agent PDF that we use is given by

P (w, t) =

∫

dρ(σ) PK(σ,w, t) =

∫

dρ(σ)

N
∑

j

δ (w − wj(σ, t)) . (10)

Because our ensemble is microcanonical, Eqs. (6) and (7) still yield N(t) = N and W (t) =
∑N

j wj(σ, t), respectively,
both quantities being independent of σ.
We note that, in passing from the Klimontovich representation PK to the smoothed representation P , we have

lost the discrete nature of N and W . In a real economy, agents are individuals (or other legal entities, such as
corporations), and there is necessarily an integer number of them. Likewise, wealth is measured in some currency,
and often rounded off to the minimum unit of that currency, or some rational fraction thereof. In the smoothed
representation, however, N and W are generally real numbers. We will return to this point later in Subsec. III G.

C. Multi-agent density functions

Similarly, we can define a two-agent density function 4 at time t, denoted by P (w,w′, t). That is, the number of
ordered pairs of agents such that one has wealth between a and b and the other has wealth between c and d at time

t is given by
∫ b

a
dw
∫ d

c
dw′ P (w,w′, t). This two-agent PDF satisfies three important properties:

(i) Because the total number of ordered pairs of agents is N2, we must have 5

N2 =

∫ ∞

0

dw

∫ ∞

0

dw′ P (w,w′, t). (11)

(ii) Because the property of being paired is symmetric, we must have

P (w,w′, t) = P (w′, w, t). (12)

(iii) Because each agent may be paired with N others, integrating the two-agent PDF over the second variable and
dividing by N must yield the one-agent density function,

P (w, t) =
1

N

∫ ∞

0

dw′ P (w,w′, t). (13)

To better understand the two-agent PDF, we first consider its Klimontovich representation

PK(w,w′, t) =

N
∑

j

N
∑

k

δ (w − wj(t)) δ (w
′ − wk(t)) . (14)

It is manifest that this factors,

PK(w,w′, t) = PK(w, t)PK (w′, t), (15)

so that the Klimontovich representation of the two-agent PDF is the product of two one-agent Klimontovich PDFs.
With this observation, the three properties in the foregoing paragraph follow immediately.
As with the one-agent PDF, the Klimontovich representation of the two-agent PDF contains much more information

than we need, so we smooth it by taking an ensemble average,

P (w,w′, t) =

∫

dρ(σ) PK(σ,w,w′, t) =

∫

dρ(σ)

N
∑

j

N
∑

k

δ (w − wj(σ, t)) δ (w
′ − wk(σ, t)) . (16)

3 Note that an average over a finite or countable number of ensemble elements would still yield a singular distribution. To obtain something
smooth, the Dirac deltas of the Klimontovich representation need to be integrated over a continuum. Some authors avoid this problem
by the notational dodge of angle brackets 〈·〉 for the ensemble average, defined so that 〈δ(w −wj)〉 is somehow smooth. We eschew this
sleight of hand because it evades the real issue: The Klimontovich distribution is a generalized function, so it belongs inside an integral.
The angle brackets must be the integral over some measure, so it is best to denote them as such.

4 It is possible to define a two-agent density function for multiple times as well. For example, we could define the PDF for finding one
agent with wealth w ∈ [a, b] at time t and another with wealth w′ ∈ [c, d] at time t′. For the purposes of this paper, however, the
single-time version with t′ = t is all we need.

5 Note that, because these are ordered pairs, we count the pairing of an agent with wealth w with another with wealth w′ as distinct from
the reverse. We also include pairings of agents with themselves. This is why the total number of pairs is N2.
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As a consequence of the ensemble average, the smoothed two-agent PDF no longer factors into a product form, but
we can write

P (w,w′, t) = P (w, t)P (w′, t) + C(w,w′, t), (17)

where we have defined the two-agent correlation function

C(w,w′, t) :=

∫

dρ(σ)





N
∑

j

δ (w − wj(σ, t)) − P (w, t)





(

N
∑

k

δ (w′ − wk(σ, t)) − P (w′, t)

)

, (18)

which may be thought of as the excess probability of finding a pair of agents, over and above the product of the
probabilities of finding each individually. As with one-agent PDFs, we sometimes suppress the time dependence,
writing for example P (w,w′) and C(w,w′), instead of P (w,w′, t) and C(w,w′, t), if the time is obvious from the
context.
It follows from the definition of the two-agent correlation function that

0 =

∫ ∞

0

dw C(w,w′, t) =

∫ ∞

0

dw′ C(w,w′, t) (19)

and

C(w,w′, t) = C(w′, w, t), (20)

and from these one can verify that P (w,w′, t) still satisfies properties (i) through (iii) above, even though it is no
longer a product form.
Likewise, p-agent PDFs for p > 2 can also be expressed as product forms supplemented by connected correlation

functions.

III. BOLTZMANN EQUATION FOR DENSITY FUNCTION

We now consider the problem of deriving a dynamical equation for the one-agent PDF, P (w, t), of the YSM.
Because agents gain or lose wealth due only to transactions with other agents, we expect that the rate of change of
the one-agent PDF depends on the two-agent PDF, and indeed this turns out to be the case. We shall derive this
result both by considering a transaction between a pair of agents, and then again by a master equation approach.

A. Pair interaction between agents

The scenario where one agent with wealth w wins and one with wealth w′ loses is described by

w = w + αmin (w,w′) (21)

w′ = w′ − αmin (w,w′) , (22)

where w > w is the new wealth of the winning agent, w′ < w′ is the new wealth of the losing agent, and α ∈ [0, 1)
is the fraction of the smaller initial wealth that is exchanged in the transaction. Equations (21) and (22) describe a
bijection on R

2
+ with inverse

w = w −
α

1− α
min

(

1− α

1 + α
w,w′

)

(23)

w′ = w′ +
α

1− α
min

(

1− α

1 + α
w,w′

)

. (24)

The Jacobian of this transformation is straightforwardly calculated to be

J(w,w′) =
∂(w,w′)

∂(w,w′)
=

1

1 + α
θ

(

w′ −
1− α

1 + α
w

)

+
1

1− α
θ

(

1− α

1 + α
w − w′

)

, (25)

where θ is the Heaviside function.
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B. Derivation of dynamic equation for density function

If we suppose that a pair with wealth (w,w′) at time t transforms into a pair with wealth (w,w′) at time t + ∆t
with probability λ∆t, we must have

P (w,w′, t+∆t)dw dw′ = (λ∆t)P (w,w′, t)dw dw′ + (1− λ∆t)P (w,w′, t)dw dw′ (26)

or, employing the Jacobian, Eq. (25),

P (w,w′, t+∆t)dw dw′ = (λ∆t)P (w,w′, t)J(w,w′)dw dw′ + (1 − λ∆t)P (w,w′, t)dw dw′. (27)

If we cancel dw, integrate over dw′ and divide by N , we obtain

P (w, t+∆t) =
λ∆t

N

∫ ∞

0

dw′ P (w,w′, t)J(w,w′) + (1− λ∆t)P (w, t), (28)

where it is understood that w and w′ are functions of w and w′ as given by Eqs. (23) and (24). We subtract P (w, t)
from both sides, divide by ∆t and let ∆t→ 0 to find

∂P (w, t)

∂t
=

1

N

∫ ∞

0

dw′ P (w,w′, t)J(w,w′)− P (w, t), (29)

where we have absorbed λ into the time scale. Finally, using Eqs. (23), (24), (25) and (13) and some straightforward
calculation, we find the rate equation,

∂P (w, t)

∂t
= −

[

P (w, t)−
1

1 + α
P

(

w

1 + α
, t

)]

+
1

N

∫ w
1+α

0

dw′

[

P (w − αw′, w′, t)−
1

1 + α
P

(

w

1 + α
,w′, t

)]

. (30)

Equation (30) is incomplete because we have not yet taken into account the equal possibility that the agent with
wealth w could lose, and that with wealth w′ could win. The rate equation for that case can be derived exactly as
above, but it is easy to see that the result differs from Eq. (30) only by the substitution α → −α. Because agents
win or lose with equal probability, the correct total rate is the average of the two, so the rate equation for the wealth
distribution becomes

∂P (w, t)

∂t
= −

[

P (w, t)−
1

2(1 + α)
P

(

w

1 + α
, t

)

−
1

2(1− α)
P

(

w

1− α
, t

)]

+
1

2N

∫ w
1+α

0

dw′

[

P (w − αw′, w′, t)−
1

1 + α
P

(

w

1 + α
,w′, t

)]

+
1

2N

∫ w
1−α

0

dw′

[

P (w + αw′, w′, t)−
1

1− α
P

(

w

1− α
,w′, t

)]

. (31)

Without this averaging of positive and negative rates, the resulting kinetic equation would not conserve the total
wealth of the population, as we shall demonstrate in Subsec. III F. In Subsec. III C, we consider an alternative
derivation of Eq. (31).
We note that Eq. (31) can be written in the form

∂P (w, t)

∂t
=

∫ +1

−1

dβ η(β)

{

−

[

P (w, t)−
1

1 + β
P

(

w

1 + β
, t

)]

+
1

N

∫ w
1+β

0

dw′

[

P (w − βw′, w′, t)−
1

1 + β
P

(

w

1 + β
,w′, t

)]}

, (32)

where η is the PDF of the fraction α and is given by

η(β) :=
1

2
δ(β − α) +

1

2
δ(β + α) (33)
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in the above example. Note that we still regard α as confined to the interval [0, 1), but β ∈ (−1,+1). This form

suggests that we could adopt a more general form for η(β), as long as we retain the normalization
∫ +1

−1 dβ η(β) = 1.
For example, by allowing the choice

η(β) =

{

1
2α if |β| < α
0 otherwise,

(34)

we model the situation in which the fraction of the poorer agent’s wealth that is at stake is uniformly distributed in
[0, α]. In any case, we demand that η be an even function so that each agent has equal win and loss probabilities in
each interaction.

C. Master equation approach

As has been pointed out by Ispolatov, Krapivsky and Redner [9, 10], an excellent way to understand the origin of
the terms in equations such as Eq. (31) is to express them in the form of a master equation as follows

∂P (w, t)

∂t
=

1

N

∫ ∞

0

dw′
∫ ∞

0

dw′′ P (w′′, w′) [−δ(w′′ − w)

+
1

2
θ (w − (1 + α)w′) δ (w′′ − w + αw′)

+
1

2
θ ((1 + α)w′ − w) δ (w′′(1 + α) − w)

+
1

2
θ (w − (1− α)w′) δ (w′′ − w − αw′)

+
1

2
θ ((1− α)w′ − w) δ (w′′(1− α)− w)] . (35)

We can think of the terms of Eq. (35) as describing an agent with wealth w′′ entering into a transaction with another
agent with wealth w′. The Dirac delta on the top line is a loss term; if w′′ = w, the transaction results in the loss of
an agent with wealth w. The four succeeding Dirac deltas are source terms, and may be justified as follows:

(i) In the first source term, the agent with wealth w′′ > w′ wins wealth αw′ from the agent with wealth w′, and
becomes an agent with wealth w = w′′ + αw′ > (1 + α)w′.

(ii) In the second source term, the agent with wealth w′′ < w′ wins wealth αw′′ from the agent with wealth w′, and
becomes an agent with wealth w = (1 + α)w′′ < (1 + α)w′.

(iii) In the third source term, the agent with wealth w′′ > w′ loses wealth αw′ from the agent with wealth w′, and
becomes an agent with wealth w = w′′ − αw′ > (1− α)w′.

(iv) In the fourth source term, the agent with wealth w′′ < w′ loses wealth αw′′ from the agent with wealth w′, and
becomes an agent with wealth w = (1 − α)w′′ < (1 − α)w′.

Note that each possibility (i) through (iv) supposes a win or a loss, and so each has a probability of one half.
Performing one or both integrals in each term of Eq. (35) quickly yields Eq. (31).

D. Random-agent approximation and Boltzmann equation

Equation (31) expresses the rate of change of the one-agent distribution in terms of the two-agent distribution. We
could proceed by writing an equation for the two-agent distribution, but it would involve the three-agent distribution.
This approach leads to an infinite hierarchy of equations, similar to the BBGKY hierarchy of statistical physics.
To truncate the hierarchy, we need to make an approximation. Referring to Eq. (17), we see that we can make the

approximation of ignoring the correlation C(w,w′, t), so that the two-agent PDF is assumed to be a product of two
one-agent PDFs. In the context of kinetic theory, this is Boltzmann’s famous molecular chaos approximation; in this
context, we refer to it as the random-agent approximation.
The random-agent approximation assumes that two agents entering a transaction are uncorrelated. It is of ques-

tionable validity. We violate it every time we frequent the same grocery store, instead of choosing one randomly. We
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will discuss the shortcomings of the random-agent approximation in Sec. VI. For now we note that its application to
Eq. (32) yields a self-contained dynamical equation for the one-agent PDF,

∂P (w, t)

∂t
=

∫ +1

−1

dβ η(β)

{

−

[

P (w, t) −
1

1 + β
P

(

w

1 + β
, t

)]

+
1

N

∫ w
1+β

0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

P (w′, t)

}

.

(36)

Equation (36) is strongly reminiscent of Boltzmann’s celebrated kinetic equation of statistical physics. Certainly, the
term with the integral over w′ on the right-hand side has the general appearance of an integral collision operator with
quadratic nonlinearity. We pursue this metaphor in Subsec. III E.

E. Comparison with statistical physics

Boltzmann’s kinetic equation of statistical physics is written for the one-particle PDF, f(r, v, t), where r denotes
position and v denotes velocity, and the evolution equation for this PDF has the form

∂f(r, v, t)

∂t
= −v · ∇f(r, v, t) + Ω[f ](r, v, t), (37)

where Ω[f ](r, v, t) denotes a quadratically nonlinear integral collision operator whose detailed form is discussed at
length in standard physics textbooks, and need not concern us here.
It is interesting to compare the first term on the right of Eq. (37) to that of Eq. (32). To address this, we rewrite

this term in Eq. (37) as a finite difference

−v · ∇f(r, v, t) ≈ −
1

τ
[f(r, v, t)− f(r − vτ, v, t)] , (38)

where τ is small. We note that both this term and the first term on the right-hand side of Eq. (32) involve the PDF
minus a distortion of itself due to the action of a Lie group. In Boltzmann’s kinetic equation, the Lie group is that
of galilean transformations, r → r − vτ . In the Boltzmann equation that we have derived for the YSM economy, the
Lie group is that of affine scalings w → w/(1 + β). Just as molecules move in physical space by addition of −vτ ,
agents move in wealth space by multiplication by 1/(1 + β). Equation (32) may therefore be understood as a variety
of Boltzmann equation that bears the same relation to the affine group as the physical Boltzmann equation bears to
the Galilean group.
This observation strongly suggests that we should investigate the small-β limit of Eq. (32) by considering PDFs

η(β) that have support only in the vicinity of the origin. We shall examine this limit in Sec. IV.

F. Conservation laws

In this subsection, we demonstrate that the quantities N and W , defined in Eqs. (6) and (7), are constants of the
motion of Eq. (36).

1. Conservation of agents

To demonstrate that the total number of agents, given by Eq. (6), is conserved, we first note that

dN

dt
=

d

dt

∫ ∞

0

dw P (w, t) =

∫ ∞

0

dw
∂P (w, t)

∂t

=

∫ +1

−1

dβ η(β)

{

−

∫ ∞

0

dw

[

P (w, t) −
1

1 + β
P

(

w

1 + β
, t

)]

+
1

N

∫ ∞

0

dw

∫ w
1+β

0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

P (w′, t)

}

, (39)
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where we have exchanged the order of integration over β and w in the second line. It follows that N will be conserved
if the right-hand side vanishes. In fact, we will show that the two terms in the curly brackets vanish separately.
First, we note that a simple change of integration variable in the first term establishes that

∫ ∞

0

dw

[

P (w, t)−
1

1 + β
P

(

w

1 + β
, t

)]

= 0. (40)

Next, we note that

1

N

∫ ∞

0

dw

∫ w
1+β

0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

P (w′, t)

=
1

N

∫ ∞

0

dw′ P (w′, t)

∫ ∞

(1+β)w′

dw

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

=
1

N

∫ ∞

0

dw′ P (w′, t)

[∫ ∞

w′

dw P (w, t)−

∫ ∞

w′

dw P (w, t)

]

= 0, (41)

where we have changed the order of integration in the first step, and made two different substitutions in the second
step. Combining Eqs. (39), (40) and (41), we find

dN

dt
= 0, (42)

as expected.

2. Conservation of wealth

Likewise, to demonstrate that the total wealth of the population, given by Eq. (7), is conserved, we first note that

dW

dt
=

d

dt

∫ ∞

0

dw wP (w, t) =

∫ ∞

0

dw w
∂P (w, t)

∂t

=

∫ +1

−1

dβ η(β)

{

−

∫ ∞

0

dw w

[

P (w, t)−
1

1 + β
P

(

w

1 + β
, t

)]

+
1

N

∫ ∞

0

dw w

∫ w
1+β

0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

P (w′, t)

}

, (43)

where we have exchanged the order of integration over β and w in the second line. It follows that W will be conserved
if the right-hand side vanishes. This time, we shall show that the two terms in curly brackets are both odd functions
of β, so that when they are integrated along with the even function η(β), the result vanishes.
A simple change of integration variable in the first term establishes that

∫ ∞

0

dw w

[

P (w, t)−
1

1 + β
P

(

w

1 + β
, t

)]

= −βW, (44)

which is proportional to β. We also have that

1

N

∫ ∞

0

dw w

∫ w
1+β

0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

P (w′, t)

=
1

N

∫ ∞

0

dw′ P (w′, t)

∫ ∞

(1+β)w′

dw w

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

=
1

N

∫ ∞

0

dw′ P (w′, t)

[∫ ∞

w′

dw (w + βw′)P (w, t)− (1 + β)

∫ ∞

w′

dw wP (w, t)

]

=
β

N

∫ ∞

0

dw′ P (w′, t)

∫ ∞

w′

dw P (w, t) (w′ − w), (45)
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which is also proportional to β. In Eq. (45), we have changed the order of integration in the first step, and made
two different substitutions in the second step. Combining Eqs. (43), (44) and (45), and invoking the evenness of the
function η(β), we find

dW

dt
= 0, (46)

as expected.
Note that wealth conservation follows from the average of the rates of change for the winning and losing scenarios,

reflected in the evenness of η(β), as described in the discussion leading from Eq. (30) to Eq. (30). Wealth is not
conserved by the winning and losing scenarios separately. For example, the foregoing argument should make it clear
that Eq. (30), by itself, does not conserve total wealth.

G. Solutions

1. Exact solutions

Ispolatov, Krapivsky and Redner [9, 10] investigated the Boltzmann equation obtained from applying the random
agent approximation to Eq. (30), and found that it admitted an exact solution proportional to (wt)−1. In fact, such
solutions exist for the much more general Eq. (36). Because Eq. (36) is manifestly invariant under time translation
symmetry, these solutions can more generally be written as

Pexact(w, t) =
C

w(T + t)
, (47)

where T is an arbitrary constant, which should be positive to avoid a singularity at finite time, and where the constant
C is given by

C =
N

∫ +1

−1 dβ η(β) ln
(

1
1+β

) . (48)

The integral in the denominator in Eq. (48) is a constant depending only on the choice of the symmetric function
η(β) used in the model. For example, the choice of Eq. (33) results in

C =
N

ln
(

1√
1−α2

) , (49)

and that of Eq. (34) results in

C =
N

1 + 1
2α ln

(

(1−α)1−α

(1+α)1+α

) . (50)

At first glance, the existence of such exact solutions might seem very useful. Unfortunately, a solution proportional
to w−1 for all w is not normalizable. It has an infinite number of agents and an infinite total wealth. That is, neither
of the integrals in Eqs. (6) and (7) are finite for these solutions. The constant parameter N in Eq. (47) is the same
one that appears in Eq. (36), but it no longer has any connection with the number of agents.
In spite of the fact that this solution is non-normalizable, we shall see that it is very useful in understanding the

long-time behavior of solutions for P (w, t).

2. Numerical solutions

We have performed simulations with populations of N = 5×104 agents, each given an initial allocation of 100 units
of wealth, so that W = 5× 106. In these simulations, we took η(β) to be of the form given in Eq. (33), with α = 0.25.
Using infinite-precision arithmetic, we ran the simulation for up to 109 transactions and, following Pareto, we plotted
the fraction of agents with wealth greater than w, namely

A(w, t) :=
1

N

∫ ∞

w

dw′ P (w′, t), (51)
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FIG. 3. Log-linear Pareto plots of wealth distribution: Taken from simulation for 50,000 agents, each with an initial
allocation of 100 units of wealth and α = 0.25.

versus w. These results are presented on log-linear plots for various times in Fig. 3, in which three regimes are clearly
visible.

• For sufficiently small values of w, we see A(w, t) ≈ 1. This indicates that P (w, t) goes to zero for small enough
w, so the lower limit of integration in Eq. (51) may be replaced by zero. It makes sense that P (w, t) should
vanish for sufficiently small w. After all, at the beginning of the simulation, all the agents had 100 units of
wealth. Even an agent who lost in every one of his interactions would still have 100(1−α)n > 0 units of wealth
remaining after n transactions. That said, it should be noted that the regime in which A(w, t) ≈ 1 is restricted
to extremely small values of w indeed. Remember that it is the logarithm of w that is plotted on the abscissa in
the graphs in Fig. 3. At time t = 108, for example, note that the constant-A regime is confined to lnw . −150,
or w . e−150. (This is why we used infinite-precision arithmetic in our calculations.) We refer to this bound as
wmin, so this regime is defined by w < wmin.

• Figure 3 also suggests that A(w, t) ≈ 0 for sufficiently large w. This indicates that P (w, t) also goes to zero for
large enough w. We refer to this bound as wmax, so this regime is defined by w > wmax. Once again, this is
reasonable, this time because there is a bound W on the total wealth of the population. Indeed, it may seem
that it must be that wmax must be strictly less than W , but one must be careful about this. It is true in our
simulation because we have discrete agents; as a statement about Eq. (36), however, it is not true, because,
as noted earlier, agent discreteness is lost in this representation, so we might well have a “half an agent” with
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wealth 2W . We will return to this point in more detail later.

• For intermediate values of w, i.e., wmin < w < wmax, the curves in Fig. (3) fit well to straight lines with negative
slope. In this regime, we evidently have A(w, t) ≈ b(t)− a(t) lnw, and differentiating both sides with respect to

w yields P (w, t) ≈ a(t)
w

. This looks remarkably like the exact solution presented earlier, but it is truncated for
both low and high wealth.

The foregoing discussion suggests that, at any given time t, to a reasonable approximation, P (w, t) has most of its
support only on a finite interval, [wmin(t), wmax(t)]. Thus our numerical results fit well to the approximate solution
P (w, t) ≈ Pc(w, t), where

Pc(w, t) :=

{

a(t)
w

for wmin(t) ≤ w ≤ wmax(t)
0 otherwise,

(52)

from which it follows that

Ac(w, t) :=











1 for w ≤ wmin(t)

a(t) log
(

wmax(t)
w

)

for wmin(t) < w ≤ wmax(t)

0 for wmax(t) < w,

(53)

where the notation reflects the fact that a, wmin and wmax all depend on time t. These quantities cannot all be
independent, however, since they must satisfy

N =

∫ ∞

0

dw Pc(w, t) = a(t) ln

[

wmax(t)

wmin(t)

]

, (54)

and

W =

∫ ∞

0

dw Pc(w, t)w = a(t) [wmax(t)− wmin(t)] . (55)

Solving these for wmax(t) and wmin(t), we find

wmin =
W

2a
csch

(

N

2a

)

exp

(

−
N

2a

)

(56)

and

wmax =
W

2a
csch

(

N

2a

)

exp

(

+
N

2a

)

. (57)

Here we have suppressed the explicit dependences on time t, but the point is that the time dependence of a determines
that of wmin and of wmax. This dependence is plotted in Fig. 4, from which it is evident that large values of a correspond
to the egalitarian situation at early times, when everybody has approximately 100 units of wealth. Small values of a
correspond to the situation at later times when there is a broad spectrum of wealth amongst the agents. One might
surmise, therefore, that a(t) decreases in time, and we now turn our attention to measuring the rate at which it does
so.
Given the data in Fig. 3, the easiest quantity for us to measure is wmin(t). We fit the intermediate region of the

curve – the part with negative slope – to a straight line, and determine where it intersects the horizontal line A = 1.
Given wmin(t) calculated in this fashion, we solve Eq. (56) numerically for a(t), and plot 1/a(t) versus t. The result,
shown in Fig. 5, fits remarkably well to the straight line 1/a(t) ≈ 3.93264 + 0.0000204046t using a least-squares fit.
The slope is close to the value of 1/N = 0.00002. To within a multiplicative constant of order unity, we therefore
conjecture the following approximate form for a(t),

a(t) ≈
N

T + t
, (58)

where T = N/a(0).
Combining Eqs. (52) and (58), we see that, in the interval [wmin(t), wmax(t)], our fit is very similar to the exact

solution given in Eq. (47). Outside this interval, however, Pc(w) vanishes. We emphasize that P (w, t) = Pc(w, t) is
merely a numerical fit, and it is not a (weak) solution of Eq. (36), as can be verified by direct substitution. It can
also be verified by noting that Ac(w, t) has slope discontinuities at wmin(t) and wmax(t), whereas the numerically
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of wealth. The right-hand side of the plot corresponds to an egalitarian situation where most agents have wealth in the vicinity
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FIG. 5. Plot of 1/a(t) versus t: Taken from numerical simulation by fitting to determine wmin(t) and solving Eq. (56)
numerically for a(t), as described in text.

measured A(w, t) in Fig. 3 seems smooth. It is remarkable that this crude truncation of Eq. (47) does as well as it
does in helping us understand the numerical results, but it does not explain them exactly.
Eqs. (52) and (53) differ from the Pareto distribution of Eqs. (4) and (3) in two significant ways. First, there is an

upper bound wmax as well as the lower bound wmin. Second, the effective Pareto index is α = 0 for this model. The
resulting distribution is normalizable only because of the introduction of the upper cutoff wmax.
As mentioned earlier, measured values of the Pareto index are always greater than one, as in Fig. 1, so it should be

reemphasized that this is a very idealized model, and that we are not claiming that it models real economies. More
realistic models can be obtained by adding embellishments to this model, as will be described in Sec. V. To pursue
the metaphor with statistical thermodynamics, this model is the analog of the ideal gas law; no real economy obeys
it, but it is such a useful idealization that it is worth careful study by anybody who endeavors to understand real
economies.

3. The long-time limit

To what does the solution P (w, t), or its approximation Pc(w, t), converge in the limit of large t or, equivalently,
small a? Because the process is a martingale, there cannot be a stationary solution that is a well behaved function,
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but we might expect that P (w, t) and Pc(w, t) converge to the same generalized function or distribution 6 as t → ∞.
In the Appendix, we consider the nature of this generalized function, which we denote by ζ(w), and in what function
space it exists. The reader who is willing to accept at face value the statement, “It converges to something that looks
like a delta function at zero wealth, except that, somehow, it has a positive first moment,” may skip the presentation
in the Appendix without fear of losing the overall thread.

IV. A PDE FOR THE YARD SALE MODEL DENSITY FUNCTION

A. The small-transaction limit

In some circumstances, it is reasonable to assume that the largest fraction of an an agent’s wealth that may be lost
in one transaction is small. Most sensible people, after all, do not stake large fractions of their wealth on a single
transaction. In that case, it is reasonable to expand the expression in curly brackets in Eq. (36) in a power series in
β. In doing so, we may note that this expression vanishes when β = 0, so there is no constant term. The next term
of the power series, proportional to β, will contribute nothing when it is integrated alongside the even function η(β).
Hence, the first term that contributes is that of order β2. The result, after some work, may be cast in the remarkably
simple form

∂P

∂t
=

∂2

∂w2

[(

w2

2
A+B

)

P

]

, (59)

where we have absorbed the constant factor
∫ +1

−1 dβ η(β)β
2 into the unit of time t. Here A(w, t) is Pareto’s function

defined in Eq. (51), and we have defined

B(w, t) :=
1

N

∫ w

0

dw′ P (w′, t)
w′2

2
. (60)

Recall that A(w, t) is non-increasing with w, with A(0, t) = 1 and limw→∞A(w, t) = 0. By contrast, B(w, t) is
non-decreasing with B(0, t) = 0, and limw→∞B(w, t) not necessarily finite. Both A(w, t) and B(w, t) are functionals
of P , so Eq. (59) is nonlinear.

B. Conservation laws in the small-transaction limit

Before seeking solutions to Eq. (59), we should check that we have retained the conservation laws in the limiting
process. Eq. (59) is clearly in conservation form

∂P

∂t
+
∂JN
∂w

= 0, (61)

where we have defined the flux of agents in wealth space,

JN = −
∂

∂w

[(

w2

2
A+B

)

P

]

= −

(

w2

2
A+B

)

∂P

∂w
− wAP. (62)

Because JN vanishes at the boundaries w = 0 and w → ∞, conservation of agents follows immediately by integration
of Eq. (61) over all w.
Note that the quantity µN :=

(

w2A/2 +B
)

P emerges as a kind of chemical potential for agents in wealth space,
because its gradient drives the flux of agents, JN = −∂µN/∂w.
Next note that we may write

0 = w
∂P

∂t
+ w

∂JN
∂w

=
∂

∂t
(wP ) +

∂

∂w
(wJN )− JN =

∂

∂t
(wP ) +

∂

∂w
(wJN + µN ) , (63)

6 We shall use these two terms interchangeably.
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which is also in conservation form

∂

∂t
(wP ) +

∂JW
∂w

= 0, (64)

where we have defined the flux of wealth in wealth space,

JW = wJN + µN = −w
∂µN

∂w
+ µN = −w

(

w2

2
A+B

)

∂P

∂w
−

(

w2

2
A−B

)

P. (65)

Because JW also vanishes at the boundaries w = 0 and w → ∞, conservation of wealth follows immediately by
integration of Eq. (64) over all w.
It is instructive to plot the agent flux and wealth flux as functions of w for a sample distribution. This plot is

shown in Fig. 6 for the arbitrarily chosen distribution P (w) = 50000we−w, which is normalized to 50,000 agents, and
is plotted as a solid curve in red. The corresponding JN (w) is plotted as a green dashed curve, and JW (w) as an blue
dot-dashed curve.
Figure 6 makes evident that there is a threshold for agents in wealth space; the bulk of the agents below this

threshold tend to move downward, while the elite above it tend to move upward. Likewise, there is a different
threshold for wealth; a minority of the wealth below this threshold tends to move downward, while the majority of
wealth above it tends to move upward. The agent threshold is on the tail of the distribution, significantly higher than
the wealth threshold. That is, a small fraction of the agents and a large fraction of the wealth move upward. In this
model, the rich become richer and the poor become poorer.

C. Numerical simulations in the small-transaction limit

It is much more straightforward to simulate the PDE in Eq. (59), with A given by Eq. (51) and B given by Eq. (60),
than it is to simulate Eq. (36). We have done this using a finite-difference method for the arbitrarily chosen initial
PDF,

P (w, 0) ∝

{

exp
[

− 10
(10−w)(w−4)

]

for 4 < w < 10

0 otherwise,
(66)

which has support on [4, 10], and we plot the results in Fig. 7. The results illustrate a fast evolution to a curve
proportional to w−1 in a bounded region, followed by the expansion of that region and concomitant reduction in
magnitude of the curve, presumably approaching the singular function ζ(w) described in the Appendix. At the end
of the Appendix, we show that ζ(w) is a stationary state of Eq. (59) in a weak sense.
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FIG. 7. Numerical solution to Eq. (59): A finite-difference method was used to solve Eq. (59) for P (w, t), given the initial
condition in Eq. (66). The result clearly illustrates the approach to a curve proportional to w−1, followed by the eventual
approach to the singular distribution ζ(w).

D. Discussion

We have presented a Boltzmann equation for the YSM, and, in the small-transaction limit, we have shown that
this reduces to a PDE. Both are integrodifferential equations, though the second is easier to understand and simulate
than the first. Both agent-based numerical results from the Boltzmann equation, and a finite-difference simulation of
the PDE reveal a strong tendency to drive increasing fractions of wealth into the hands of a decreasing minority of
agents. In both cases, we conjecture that the time-asymptotic state of the system is a generalized function ζ(w) that
has all of the N agents condensed to zero wealth, while retaining a positive first moment W .

One might wonder if this approach to a singular state indicates that the model is lacking. After all, even idealized
agent-based models of microeconomics are much more complicated than the YSM. As an example, consider the famous
“Sugarscape” model of Epstein and Axtell [12]. A condensed explanation of Sugarscape may be found in Beinhocker’s
book [2], but even this explanation indicates that Sugarscape is vastly more complicated than our simple YSM.

In Sugarscape, agents have many features other than simply wealth. For example, they have spatial location, and
they can move about on a two-dimensional grid, searching for “sugar” and “spice,” and trading with other nearby
agents. They also have a built-in algorithm that controls their movements and actions based on their environment.
In the more sophisticated versions of the model, agents die for lack of sugar and breed when they have excess sugar.
There are also versions of the model in which the agents can sexually reproduce, with each parent passing along
features of their algorithm to their offspring.
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FIG. 8. Wealth distribution in “Sugarscape”: These plots are histograms of the number of agents versus wealth in Epstein
and Axtell’s Sugarscape model. Time runs downward from an arbitrary initial distribution in the top figure to something that
looks remarkably like what is observed in the YSM. (Figure taken from Epstein and Axtell [12] with permission.)

Like us, Epstein and Axtell started the agents in Sugarscape with various initial distributions of wealth to see how
these distributions would evolve, and they plotted their results versus time. One of their time sequences is reproduced
in Fig. 8. Time runs downward in this figure. In spite of all the complications present in Sugarscape, the evolution
shown in Fig. 8 is immediately familiar; indeed, the qualitative resemblance to Fig. 7 is striking. A least-squares fit
on a log-log plot 7 reveals that the penultimate plot in Fig. 8 fits well to w−1.36, and the last figure fits well to w−1.24.
These correspond to Pareto α values of 0.36 and 0.24 – not normalizable unless cutoffs are assumed. These results
are not so far removed from ours.
These observations suggest an Occam’s Razor argument that the YSM captures at least some of the essential

features of Sugarscape, and there is no denying that the YSM is much simpler to understand and simulate. Because
I suspect that this paper will be read by economists as well as physicists, an additional transcultural cautionary
word is warranted here. Economists are naturally suspicious of the suggestion that correct macro predictions of a
theory justify its microfoundations. To them, this conjures up images of Friedman’s 1953 arguments defending the
assumption of perfect rationality in microeconomics simply because it (sometimes) produces correct results. That is
certainly not what is being suggested here. Sugarscape, while still very idealized, is far more realistic than the YSM.
In fact, it exhibits emergent phenomena, such as the growth of trade routes, that are not even defined in the YSM.
To a physicist, the fact that the YSM is able to explain some of the emergent phenomena of Sugarscape, such as

power-law P with α < 1, can only be regarded as a positive outcome. Physicists have a long history of idealizations that
have advanced human knowledge, from elliptic planetary orbits (Kepler), to arrows on a grid representing magnetic
domains (Ising). All of these idealizations are known to be unrealistic, and yet all of them have led to leaps in our
understanding. All we are suggesting here is that the YSM has a key place in the hierarchy of idealizations that
constitute our understanding of real economic phenomena.

7 discarding histogram entries with zero agents
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V. ADDITIONAL FEATURES

A. The importance of wealth redistribution

Real economies seem to have Pareto exponents that are greater than one. It is often claimed that α > 1 is necessary
in order for the Pareto PDF to be normalizable. As we have seen, however, this argument is valid only if we assume
no upper cutoff. Real economies have discrete agents, so wealth can not concentrate beyond the extreme of one agent
having all of it, and this in itself sets an upper cutoff. As Pareto himself observed, there is also usually some social
safety net for the poor, setting a lower cutoff. With such cutoffs, there is nothing stopping the PDF between them
from having a Pareto index less than unity, and this is precisely what we have found in both the YSM and Sugarscape
models described above.
This naturally raises a question: If normalizability is not the reason that α > 1 is observed in real economies, then

what is the reason? We suggest that real societies have wealth redistribution mechanisms that naturally increase α.
It could be that real societies become politically unstable if α is too small. Whatever the reason, most societies have
taxation on wealth or income, and most governments use the revenues thereby generated to build infrastructure to
improve the lives of all.
There are other mechanisms preventing the uncontrolled concentration of wealth. Countries allow immigration to

increase N , and they mine natural resources (among other things) to increase W . Central banks can print currency.
Agents may make successful investments outside the country, thereby increasing their own wealth. All of these features
may impact the distribution of wealth. We consider a few such features in the following subsections.
Recall that we have studied the YSM at two different levels of description, namely the Boltzmann equation in

Sec. III, and the PDE to which it reduces in the small-transaction limit in Sec. IV. We could introduce new features
at either of these two levels of description. In what follows, we continue to use the small-transaction limit because it
is more elegant and tractable. There is nothing preventing the use of a similar approach for the Boltzmann equation.
Suppose that a certain mechanism changes the wealth of an agent at a rate f(w) that depends only on that agent’s

wealth w. Then, to first order in ∆t, we must have

P (w, t)dw = P (w + f(w)∆t, t+∆t)dw′. (67)

If we Taylor expand the right-hand side and retain terms only to first-order in ∆t, we find

∂P

∂t
+

∂

∂w
(fP ) = 0. (68)

Taking the zeroth moment of Eq. (68), we see that it conserves agents. Taking the first moment, we see that Eq. (68)
may not conserve wealth. All of the examples that follow will conserve agents, so we shall use this general approach.
The observations in this section will be restricted to the derivation and exposition of appropriate dynamical equa-

tions. Numerical modeling of economies with these extra features will be reported in a future paper [13].

B. Production

Suppose that a society produces wealth ξ per unit time, perhaps from an extraction industry of some sort, and that
it divides the wealth thus produced evenly among its N agents. Then f(w) = ξ/N . If this mechanism were the only
one present, the rate equation for the PDF would be

∂P

∂t
+

∂

∂w

(

ξ

N
P

)

= 0. (69)

Eq. (69) is a one-sided wave equation with wave speed ξ/N . As noted, it conserves the number of agents N . Taking
the first moment, however, we see that the total wealth of the society satisfies

dW

dt
= ξ. (70)

In this model, therefore, W grows linearly in time.
If we suppose that production occurs in addition to YSM wealth exchange, the full differential equation becomes

∂P

∂t
+

∂

∂w

(

ξ

N
P

)

=
∂2

∂w2

[(

w2

2
A+B

)

P

]

. (71)

Because we have already demonstrated that the YSM terms on the right conserve both N and W , this combined
model will have constant N and linearly increasing W . Because of the linear increase of W , the model never reaches
a stationary state, but an appropriately scaled version of it may do so.
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C. Inflation

Suppose that all agents are able to loan their wealth to external borrowers who pay them an interest ν per unit
time. Then f(w) = νw, so if this mechanism were the only one present, the rate equation for the PDF would be

∂P

∂t
+

∂

∂w
(νwP ) = 0. (72)

Once again, Eq. (72) conserves agents, but the total wealth of the society obeys

dW

dt
= νW, (73)

demonstrating that W grows exponentially in time, with time constant ν, as expected.
If we suppose that this mechanism is present in addition to YSM wealth exchange, the full differential equation

becomes

∂P

∂t
+

∂

∂w
(νwP ) =

∂2

∂w2

[(

w2

2
A+B

)

P

]

. (74)

Once again, because we have already demonstrated that the YSM terms on the right conserve both N and W , this
combined model has constant N and exponentially increasing W . Again, because of the exponential increase of W ,
the model never reaches a stationary state, but an appropriately scaled version of it may do so.

D. Taxation

Finally, suppose that all agents are assessed a wealth tax of τ percent per unit time. The amount of tax paid by
an agent with wealth w is τw. Integrating this over the distribution, we see that the total tax taken from the society
is τW . If we suppose that this total tax revenue is divided evenly and redistributed amongst the N agents, we find
that f(w) = −τw + τW/N . If this mechanism were the only one present, the rate equation for the PDF becomes

∂P

∂t
+

∂

∂w

[

τ

(

W

N
− w

)

P

]

= 0. (75)

Eq. (75) conserves both N and W . Because it continually redistributes wealth, it is not surprising that it admits the
generalized stationary solution P (w) = Nδ(w−W/N), in a weak sense, as is readily verified. This equitable solution
corresponds to an infinite Pareto index.
If we suppose that taxation is present in addition to YSM wealth exchange, the full differential equation is

∂P

∂t
+

∂

∂w

[

τ

(

W

N
− w

)

P

]

=
∂2

∂w2

[(

w2

2
A+B

)

P

]

. (76)

This combined model will conserve both N and W , and is interesting in that the terms on the left-hand side drive the
Pareto index to infinity, while those on the right-hand side drive it to zero. We might hope that together they would
lead to power-law solutions with intermediate values of the Pareto index, closer to those observed in real economies,
but it is straightforward to verify that a simple power law will not work, even with upper and lower cutoffs. Further
analytic and numerical investigation of this equation will be the subject of future work [13].

VI. CONCLUSIONS

The analogy between transacting agents and colliding molecules has been pointed out by a number of authors
(see, e.g., Yakovenko [4]). We have pursued this analogy and derived a general Boltzmann equation governing wealth
distribution in the Yard-Sale Model (YSM), with careful attention to all of the assumptions that must go into such a
derivation, such as the random-agent approximation.
We presented strong analytical and numerical evidence that the dynamics of the YSM make the rich richer and the

poor poorer, inexorably driving the distribution of wealth to a decidedly singular state with vanishing Pareto index.
The asymptotic state of the dynamics is one in which all but a vanishingly small fraction of the agents have zero
wealth, even while the first moment of the wealth remains positive. In the Appendix, we introduced the functional
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analysis necessary to make this last statement rigorous, describing the asymptotic state as a generalized function ζ
which is different from the Dirac delta at zero wealth.
We then introduced the small-transaction limit in which the Boltzmann equation reduces to a simple partial

differential equation, and presented numerical evidence that this equation has the same singular limit as the Boltzmann
equation. To the best of our knowledge, this PDE has not been posited before in the context of wealth dynamics, and
is therefore one of this paper’s principal new contributions.
We pointed out that other more detailed artificial society models, such as Sugarscape [12] also exhibit dynamics

which drive the Pareto index to values less than unity. We refuted the usual argument proscribing this, based on
the non-normalizability of the wealth distribution. With lower and upper cutoffs that approach zero and infinity,
respectively, at just the correct rates, there is nothing preventing a power-law wealth distribution with Pareto index
less than unity.
Finally, we showed how this model may be extended to include phenomena which are likely to lead to stationary

states with more realistic values of the Pareto index. The detailed analytical and numerical examination of these
models will be the subject of future work [13].
There are many ways in which this work can be expanded and extended. We can add extra variables to the

agents, such as spatial position. We can examine the development of correlations between transacting agents, and the
corrections that these make to the random-agent approximation. We can examine the possibility of transactions that
involve three or more agents at a time, instead of just pairs of agents. We can also examine steady states of Eq. (76).
It is hoped that this presentation will encourage more work along these lines.
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Appendix: Description of the time-asymptotic limit

As noted in the text, the function P (w, t) and its approximation Pc(w, t) approach a generalized function as t→ ∞.
This generalized function has support only at the origin, and has zeroth moment equal to N . This suggests the limit
Nδ(w), but we additionally require that it have first momentW . In the function space L2, this additional requirement
is impossible to satisfy. We are forced to the conclusion that the dynamics of wealth can evolve P (w, t) to something
outside L2 in the t → ∞ limit. The appropriate function space in which to study the time asymptotics of wealth is
therefore a larger function space than L2. This Appendix describes the functional analysis that is necessary to make
this statement rigorous. The discussion is meant to be self-contained, requiring little prior background in the subject.
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Our numerical simulations clearly indicate that the asymptotic state of the system has N − 1 agents in a state of
abject poverty, and one with all the wealthW . As noted in the text, however, this division between N−1 poor agents
and one wealthy agent is due to the discrete nature of the simulation. If we could simulate the continuous distribution
of agents governed by Eq. (36), we might expect to see ever smaller “fractions of agents” f with wealthW/f , alongside
N − f agents living in poverty. If f → 0 in the time-asymptotic limit, we might expect that everybody eventually
ends up poor, in some sense, so that a good generalized function candidate for limt→∞ P (w, t) or limt→∞ Pc(w, t)
might be Nδ(w). Indeed, this view is reinforced by noting that Eq. (36) can be rewritten in the suggestive form

∂P (w, t)

∂t

=

∫ +1

−1

dβ η(β)
1

N

∫ w
1+β

−0

dw′

[

P (w − βw′, t)−
1

1 + β
P

(

w

1 + β
, t

)]

[P (w′, t)−Nδ(w′)] ,

(A.1)

where the notation −0 for the lower limit of integration is meant to emphasize that the Dirac delta is entirely contained
within the region of integration. This form makes clear that P (w, t) = Nδ(w) is a steady state solution of Eq. (36).
It is also zero for w > 0, consistent with the a→ 0 limit of a/w.
The trouble with the above view is that, although the generalized function P (w) = Nδ(w) obviously satisfies

Eq. (6) 8, it does not satisfy Eq. (7), except in the trivial economy that has W = 0. This will not do. We need a
generalized function ζ(w), defined for w ∈ [0,∞), that has the following three properties:

(i) ζ(w) = 0 for w > 0

(ii)
∫∞
0 dw ζ(w) = N

(iii)
∫∞
0 dw ζ(w)w =W .

The first two of these are reminiscent of the “physicists’ definition” of (N times) a Dirac delta. As is well known, the
apparent absurdity of these simultaneous demands was resolved mathematically only by the advent of the theory of
distributions by Sobolev, Schwartz and others between the 1930s and the 1950s [14]. The question facing us now is
how to use distribution theory to define a generalized function ζ with all three of the above properties.
Distribution theory requires a space D of test functions ψ(w) that are smooth and have bounded support 9.

Generalized functions are then associated with linear functionals on this space. The action of a functional f on a test
function ψ is a map D → R, and the real number that results is usually denoted 〈f, ψ〉. For example, the functional
δ defined by 〈δ, ψ〉 = ψ(0) is the Dirac delta. It is easily seen to be a linear functional, since

〈δ, c1ψ1 + c2ψ2〉 = (c1ψ1 + c2ψ2)(0) = c1ψ1(0) + c2ψ2(0) = c1〈δ, ψ1〉+ c2〈δ, ψ2〉. (A.2)

In this way of thinking, δ is not a function of w; rather, it is a functional on D. We may then revert to writing
∫∞
0
dw δ(w)ψ(w) in place of 〈δ, ψ〉, but it must be understood that this is an abuse of notation. There is never any

question about what the value of δ(w) is at a particular w. Whenever ambiguity arises, we turn to the interpretation
of δ as a linear functional on D to resolve it. An excellent introduction to distribution theory may be found in, for
example, the first few chapters of the text by Griffel [14].
To put the generalized function ζ on a firm footing, we need more requirements on our space of test functions. Let

us first consider the space G of test functions ψ that are smooth and have bounded support on [0,∞), and for which

F [ψ] :=

∫ ∞

0

dw
|ψ(w) − ψ(0)|

w
<∞. (A.3)

The reader may verify, for example, that the test function

ψ(w) =

{

exp
[

− 1
w(1−w)

]

for 0 < w < 1

0 otherwise
(A.4)

belongs to G. By contrast, the functions ψ(w) = 1 and ψ(w) = w do not belong to G, because they do not have
bounded support; in the latter case, there is also the problem that F applied to ψ is not finite.

8 with a lower limit of integration of −0 as above
9 A function is smooth if it is infinitely differentiable. A function has bounded support if the set of w for which it is nonzero (more precisely,
the closure of that set) is a subset of [a, b] for some real a and b.
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We should first verify that G is indeed a linear space. We do this by supposing that we have two test functions
ψ1 ∈ G and ψ2 ∈ G. This means that both ψ1 and ψ2 are smooth and have bounded support on [0,∞), and that
F [ψj ] <∞ for j = 1, 2. We now consider the linear combination c1ψ1 + c2ψ2. It is clear that this combination is also
smooth and has bounded support on [0,∞). We then note that the linear combination satisfies Eq. (A.3), since

F [c1ψ1 + c2ψ2] =

∫ ∞

0

dw
|c1ψ1(w) + c2ψ2(w) − c1ψ1(0)− c2ψ2(0)|

w

≤

∫ ∞

0

dw
|c1ψ1(w)− c1ψ1(0)|+ |c2ψ2(w) − c2ψ2(0)|

w

≤ |c1|F [ψ1] + |c2|F [ψ2]

<∞, (A.5)

where we have used the triangle inequality. So G is closed under linear combinations, and thereby qualifies as a linear
space.
In fact, G is not quite big enough for our purposes. We want the functions φ(w) = 1 and φ(w) = w and constant

multiples thereof to be in our space of test functions, but, as noted above, they are not in G. So we next define G1 to
be the space of functions that are the sum of a function in G and any linear function of w. That is, for each φ ∈ G1, we
may write φ(w) = ψ(w)+γ+µw, where ψ ∈ G and γ, µ ∈ R. Moreover, we shall demonstrate that this decomposition
is unique. For any function φ ∈ G1 there are unique real numbers γ and µ, such that ψ(w) = φ(w) − γ − µw ∈ G.
Before showing how to compute γ and µ, we should make an incidental comment: The principal reason for using

test functions with bounded support in distribution theory is to allow us to integrate by parts, discarding surface
terms with reckless abandon. Note that we can do this in the space G, but we will need to be a bit more careful in
the space G1 because limw→∞ φ′(w) = µ.
To calculate γ and µ from φ ∈ G1, note that limw→∞ (φ(w) − µw) = γ follows from the fact that ψ has bounded

support. The approach is then to show that µ is the unique real number for which the limit limw→∞ (φ(w) − µw)
exists, and that for this value of µ the value of the limit is γ.
To see that this approach defines µ uniquely, let us suppose that there were two values µ1 and µ2 for which the

limit existed. That is, suppose that

lim
w→∞

(φ(w) − µ1w) = γ1 (A.6)

lim
w→∞

(φ(w) − µ2w) = γ2 (A.7)

are both finite and real. Since both limits exist, we can subtract these equations to obtain

lim
w→∞

[(µ2 − µ1)w] = γ1 − γ2, (A.8)

but there is no way that this last statement can be true, unless µ1 = µ2. Uniqueness of γ then follows immediately.
The unique association of φ ∈ G1 with the constant µ, such that limw→∞ (φ(w) − µw) exists, is itself a linear

functional, which we shall call Ξ; that is, we write 〈Ξ, φ〉 = µ. To demonstrate linearity of Ξ, let us suppose that
φj ∈ G1, so that limw→∞ (φj(w) − µjw) = γj exists, and we can write 〈Ξ, φj〉 = µj for j = 1, 2. By taking a linear
combination of these limits, it follows that

lim
w→∞

[(c1φ1(w) + c2φ2(w)) − (c1µ1 + c2µ2)w] = c1γ1 + c2γ2 (A.9)

also exists, so

〈Ξ, c1φ1 + c2φ2〉 = c1µ1 + c2µ2 = c1〈Ξ, φ1〉+ c2〈Ξ, φ2〉, (A.10)

thereby demonstrating linearity of the functional Ξ and justifying our notation.
Armed with our space G1 of test functions and the functional Ξ, we are now ready to make sense of the generalized

function ζ, described earlier. In the language of distributions, ζ may be written

ζ = Nδ +WΞ. (A.11)

That is, for any test function φ ∈ G1, where φ(w) = ψ(w) + γ + µw with ψ ∈ G, we have

〈ζ, φ〉 = Nφ(0) +Wµ. (A.12)



25

As with δ, we may now abuse notation by writing the above as follows
∫ ∞

0

dw ζ(w)φ(w) = Nφ(0) +Wµ. (A.13)

Setting φ(w) = 1, we find γ = 1 and µ = 0, so it follows that
∫ ∞

0

dw ζ(w) = N. (A.14)

Setting φ(w) = w, we find γ = 0 and µ = 1, so it follows that
∫ ∞

0

dw ζ(w)w =W. (A.15)

Thus, the generalized function ζ satisfies Eqs. (6) and (7).
Note that G1 may be characterized as the space of functions whose second derivative is in G. (If we have φ(w) =

ψ(w)+γ+µw, then clearly φ(w) and ψ(w) have the same second derivative.) This observation relates G1 to a class of
function spaces known as Sobolev spaces, but elaboration of this point would take us beyond the scope of this paper.
Can we now prove that the function Pc, defined in Eq. (52), converges weakly to ζ in the limit as a → 0? For an

arbitrary φ ∈ G1, and for µ = 〈Ξ, φ〉 and ψ(w) = φ(w) − γ − µw ∈ G, we consider the quantity

|〈Pc − ζ, φ〉| =

∣

∣

∣

∣

∫ ∞

0

dw [Pc(w)− ζ(w)] φ(w)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

dw Pc(w) [ψ(w) + γ + µw]−Nφ(0)−Wµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

dw Pc(w) [ψ(w) − ψ(0)]

∣

∣

∣

∣

=

∣

∣

∣

∣

a

∫ amax

amin

dw
ψ(w)− ψ(0)

w

∣

∣

∣

∣

≤ |a|

∫ amax

amin

dw
|ψ(w) − ψ(0)|

w

≤ |a|

∫ ∞

0

dw
|ψ(w) − ψ(0)|

w

≤M |a|, (A.16)

where M = F [ψ] <∞ because ψ ∈ G, and where we used the fact that Pc was constructed to obey Eqs. (6) and (7).
It follows that

lim
a→0

|〈Pc − ζ, φ〉| = 0. (A.17)

Because Eq. (A.17) holds for arbitrary test functions φ ∈ G1, we can conclude that Pc converges weakly to ζ in the
limit as a → 0 or t → ∞ in the function space G1. Our numerical evidence then strongly suggests that P obeying
Eq. (36) likewise converges weakly to ζ. This last point is, of course, not proven by the above arguments, but we offer
it as a very plausible conjecture.
Finally, we can show that the generalized function ζ(w) described above is also a weak stationary state of the

dynamical equation for the small-transaction limit, Eq. (59). To see this, we examine the integral of the right-hand
side of Eq. (59) multiplied by an arbitrary test function φ ∈ G1,

∫ ∞

0

φ(w)
∂2

∂w2

[(

w2

2
A+B

)

ζ

]

dw. (A.18)

Writing φ(w) = ψ(w) + γ + µw as before, and integrating by parts twice, we find
∫ ∞

0

∂2ψ(w)

∂w2

(

w2

2
A+B

)

ζ dw. (A.19)

To evaluate this last integral, let f(w) := ψ′′(w)(w2A/2 +B). Then the integral is equal to Nf(0) +Wµ, where µ is
the unique number such that limw→∞ [f(w)− µw] exists. We first note that f(0) = 0 because w2A/2 + B vanishes
at w = 0 (and ψ is smooth). Then µ = 0 follows from the fact that ψ has bounded support. So the integral vanishes,
and the generalized function ζ(w) is a stationary state of Eq. (59) in this weak sense. We conjecture that it is the
stationary state to which arbitrary initial conditions generically attract.


