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Abstract

This paper characterizes equilibrium outcomes in extensive form games with incomplete in-

formation in which players sign renegotiable contracts with third-parties. Our aim is to under-

stand whether renegotiation-proof third-party contracts can be used as commitment devices. We

first characterize renegotiation-proof contracts and strategies for general extensive form games

with incomplete information and then apply our results to two-stage games. If contracts are ob-

servable, then the second mover obtains her best possible payoff given that she plays a renego-

tiation-proof strategy and the first mover best responds. If contracts are unobservable, then this

outcome is still an equilibrium but there are others. In fact a “folk theorem” type result holds: Any

outcome in which the second mover best responds to the first mover’s action on the equilibrium

path and the first mover receives at least his “individually rational payoff”, can be supported. We

also apply our results to games with externalities and show that renegotiation-proofness imposes

a very particular restriction in these games.
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1 Introduction

Could an incumbent firm deter entry by contracting with third parties, such as a bank or a labor

union? Could a central bank (or a government in a union) credibly commit to monetary policy (or

fiscal policy) through a contract with the government (or supranational body)? More generally can

contracts with third parties change the outcome of a game to the advantage of the contracting player?

When contracts are non-renegotiable, the answer to this question is in general yes.1 In fact, there are

several “folk theorem” type results for different classes of games with observable and non-renegotiable

third-party contracts.2 The effects of unobservable and non-renegotiable third-party contracts are

also well-understood: Nash equilibrium outcomes of a game with and without third-party contracts

are identical (Katz (1991)). In fact, all (and only) Nash equilibrium outcomes of the original game

can be supported as a sequential equilibrium outcome of the game with unobservable and non-

renegotiable contracts (Koçkesen and Ok (2004) and Koçkesen (2007)). In this paper we seek an an-

swer to this question for renegotiable contracts.3

More precisely, we analyze if an how renegotiation-proof third-party contracts change the equilib-

rium outcomes of extensive form games with incomplete information. In the main body of the paper

we consider only two-player two-stage games where the second mover (player 2) has some payoff rel-

evant private information. In what we call the original game, Nature moves first and determines the

state of the world θ. After that, player 1 chooses an action a1 without observing θ. Player 2 observes

both θ and a1, chooses a2, and the game ends. Payoff function of player i = 1,2 is ui (a1, a2,θ). Player

1’s strategy is simply a choice of action a1 whereas player 2’s strategy is a function b2(a1,θ).

In the game with contracts we let player 2 sign a contract with a neutral third-party before the

original game starts. A contract specifies transfers between player 2 and the third-party as a function

of the contractible outcomes, which we assume to be the action choices of the two players, (a1, a2).

The underlying and crucial assumption is that the private information of player 2 is not observable

by any other player, including the third-party, and thus non-contractible. Given a contract f , the

third-party’s payoff is f (a1, a2) whereas player 2’s is u2(a1, a2,θ)− f (a1, a2).

Our main objective is to understand the outcomes of the original game that can be supported in

some equilibrium of the game with contracts. The first question that we need to answer is the type

of strategies b2(a1,θ) that can be supported by a contract, i.e., incentive compatible strategies. Since

contracts cannot depend on θ, incentive compatibility imposes some restrictions on b2. In order to

get a handle on these restrictions, we assume that player 2’s payoff function exhibits increasing dif-

ferences in (θ, a2). It then follows that strategy b2 is incentive compatible if and only if it is increasing

in θ (This is Lemma 1 on page 7).

The second important step is to characterize the restrictions imposed by renegotiation. We model

renegotiation as a game form: After player 1 moves, player 2 can make a renegotiation offer to the

third-party, who knows a1, but not θ, and can either accept the offer or reject it. We define renego-

1See, among many others, Vickers (1985), Fershtman and Judd (1987), Sklivas (1987), Koçkesen et.al. (2000), Brander and
Lewis (1986), Bolton and Scharfstein (1990), Snyder (1996), Spencer and Brander (1983), Brander and Spencer (1985), Eaton
and Grossman (1986), Walsh (1995).

2See Fershtman, Judd, and Kalai (1991), Polo and Tedeschi (2000), and Katz (2006).
3Prat and Rustichini (2003) and Jackson and Wilkie (2005) analyze related models in which players can write action

contingent contracts before the game is played. Unlike the current paper, in these papers contractual relationships are not
exclusive and the focus is on the efficiency properties of the equilibrium set. Also related is Bhaskar (2009), in which players
need to pay a price to a supplier in order to play certain actions that are controlled by this supplier.
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tiation-proof equilibrium as a perfect Bayesian equilibrium in which the equilibrium contract is not

renegotiated after any (θ, a1) and characterize the renegotiation-proof contracts and strategies (This

is Theorem 1 on page 9). We also provide necessary and sufficient conditions for a strategy to be rene-

gotiation-proof (Propositions 2 and 3).4 These results generalize quite readily to arbitrary extensive

form games with incomplete information where players are free to use mixed strategies, to environ-

ments in which the third-party is not neutral, and to stronger notions of renegotiation-proofness (See

Section 4).

In Section 5 we present the implications of the above results in terms of the outcomes of the

original game. We allow contracts to be observable or unobservable (by player 1) and renegotiable or

non-renegotiable. We show that if contracts are observable, then player 2 can commit credibly to his

Stackelberg payoff, i.e., the best payoff that he can achieve given that player 1 plays a best response.

If the contracts are non-renegotiable, then the only restriction on the Stackelberg payoff is that player

2 uses an increasing strategy (Proposition 5). If contracts are renegotiable, then they also have to

be renegotiation-proof (Proposition 7). We also show that these are the only outcomes that can be

supported (Propositions 6 and 8). In other words, as long as one respects the restrictions imposed by

incentive compatibility and renegotiation-proofness, contracts indeed serve as credible commitment

devices.

We next consider unobservable contracts. We show that if contracts are non-renegotiable, then

any Bayesian Nash equilibrium of the original game in which player 2’s strategy is increasing can be

supported (Proposition 9). In fact, we prove a folk theorem type result: any outcome (a∗
1 , a∗

2 (θ)) of

the original game in which a∗
2 (θ) is a best response to a∗

1 for each θ and player 1’s payoff is at least as

large as his “individually rational” payoff, can be supported (Corollary 1). Definition of individually

rational payoff is different from the standard one in that player 2, in minimizing player 1’s payoff, is

restricted to using increasing strategies. Similar results hold for renegotiation-proof contracts except

that in the definition of the individually rational payoff, player 2’s strategy is restricted to be increasing

and renegotiation-proof (Proposition 10 and Corollary 2). The upshot is that unobservable and rene-

gotiation-proof contracts may still serve as commitment devices but unlike with observable contracts

Stackelberg payoff is not the only equilibrium outcome anymore.

In Section 6 we provide two applications of our results. In one application we consider games

with externalities, i.e., games in which player 1’s payoff is increasing or decreasing in Player 2’s ac-

tion (Section 6.1). Suppose, for example, that player 1’s payoff is increasing in a2. If contracts are

non-renegotiable, then player 2 can obtain a favorable outcome by punishing player 1 by playing the

smallest a2 whenever he plays an unfavorable action. Since a constant strategy is increasing, incen-

tive compatibility does not bring any further restrictions on the outcomes that can be supported with

non-renegotiable contracts. Renegotiation-proofness, on the other hand, imposes a very specific type

of constraint on the kind of punishment player 2 can inflict upon player 1: the highest type of player

2 must play a best response while the other types could keep playing the smallest action (Corollary

3).5 In other words, the additional restriction renegotiation-proofness brings about depends on the

4Our assumption that the third-party cannot observe θ during renegotiation is crucial. Otherwise, the result is trivial:
One can only support the perfect Bayesian equilibria of the original game. This is because, if both a1 and θ are common
knowledge, then player 2 and the third-party would renegotiate away any strategy of player 2 that does not maximize the
joint surplus, i.e., player 2’s payoff in the original game.

5This is true when player 1’s payoff is increasing in player 2’s action. If his payoff is decreasing, then the harshest punish-
ment player 2’s can impose is to play the highest action for all types other than the lowest, who must play a best response.
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probability of the highest type: If this probability is high, then renegotiation has a real bite, otherwise

it does not.

The class of games with externalities is large and contains many economic models. The canon-

ical example, of course, is the Stackelberg competition. We show that in this game, the follower

firm indeed benefits from renegotiation-proof third-party contracts. This game can also be con-

strued as an entry deterrence game, in which case we show that entry can always be deterred with

non-renegotiable contracts but only under certain conditions with renegotiation-proof contracts, i.e.,

renegotiation has a real bite in these games.

RELATIONSHIP TO THE LITERATURE

The closest paper to ours is Dewatripont (1988), which analyzes an entry-deterrence game in

which the incumbent signs a contract with a labor union before the game begins. A potential en-

trant observes the contract and then decides whether to enter or not. Renegotiation takes place after

the entry decision is made, during which the union offers a new contract to the incumbent. The

crucial assumption is that the incumbent has some payoff relevant private information during the

renegotiation process. Dewatripont (1988) shows that commitment effects exist in such a model and

may deter entry when contracts are publicly observable. We show that this commitment effect exists

for unobservable contracts as well. Also, we analyze arbitrary two-stage games and hence can gauge

the effects of third-party contracts in other interesting settings, for example in oligopoly models with

price competition or credibly commitment to monetary and fiscal policy. Lastly, in our renegotiation

protocol, the informed party makes the new contract offer, whereas in Dewatripont’s, it is the unin-

formed party who makes the offer. This turns out to make a difference as we discuss in Section 6.1

(Proposition 11).

In a related paper, Gerratana and Koçkesen (2012) also study the effects of renegotiation-proof

third-party contracts in two-stage games. However, that paper assumes that the original game is with

perfect information whereas the current one assumes it is a game with incomplete information. Some

aspects of the analyses of these two models are similar and use similar tools, namely theorems of the

alternative. Indeed, results on renegotiation-proof contracts and strategies in Section 3 (Theorem 1

and Propositions 2 and 3) are exact analogs of their counterparts in Gerratana and Koçkesen (2012).

However, the games to which these are applied are completely different. This becomes most trans-

parent in applications (Section 6). Obtaining similarly sharp results in Gerratana and Koçkesen (2012)

has been possible in a different class of games and the results are quite different. Furthermore, in the

current paper we extend our results to (1) arbitrary extensive form games and mixed strategies; (2) to

non-neutral third-parties; and (3) to the case of observable contracts.

Another related paper is Caillaud et al. (1995), which analyzes a game between two principal-

agent hierarchies. In the first stage of their game each principal decides whether to publicly offer a

contract to the agent; in the second stage each principal offers a secret contract to the agent, which,

if accepted, overwrites the public contract that might have been offered in stage 1; in the third stage

each agent receives payoff relevant information, decides whether to quit, and if he does not quit, he

plays a normal form game with the other agent. Their main question is whether there exist equilibria

of this game in which the principals choose not to offer a public contract in stage 1. If the answer

to this question is no, then the interpretation is that contracts have commitment value. They show

that contracts have commitment value if the market game stage is of Cournot type, but not if it is of
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Bertrand type. The crucial difference between Caillaud et al. (1995) and our model is that they allow

renegotiation only before the game begins, whereas in our setting renegotiation can happen both

before and after the game begins.6

Finally, Bensaid and Gary-Bobo (1993) analyze a model in which the original game is a two-stage

game and the initial contract can be renegotiated after player 1 chooses an action. However, in their

model utility is not transferable between player 2 and the third-party. They show that, in a certain

class of games, contracts with third parties have a commitment effect, even when they are renego-

tiable. We analyze a model with transferable utility and show that commitment effects still exist.

2 The Model

Our aim is to understand the effects of renegotiation-proof third-party contracts in extensive form

games. In the main body of the paper we will do this in a particularly simple environment: two-stage

games with private information, which we call the original game. The main reason we present our re-

sults for two-stage games is ease of exposition. Still, we should note that many models in economics

such as the entry game, the Stackelberg game, and monopolistic screening are two-stage games, be-

long to this class of games. Furthermore, we show in Section 4.1 that our main result extends to

arbitrary extensive form games with incomplete information as long as they satisfy an increasing dif-

ferences property (see Definition 8).

We then allow one of the players to sign a contract with a third-party before the original game

begins and call this new game the game with third-party contracts. The contract specifies a transfer

between the player and the third-party as a function of the contractible outcomes of the original

game. The crucial aspect of our model is the presence of asymmetric information between this player

and the third-party during the renegotiation phase.

More precisely, we define the original game, denoted G , as follows: Nature chooses θ ∈ Θ ac-

cording to probability distribution p ∈∆(Θ). After the move of Nature, player 1, without observing θ,

chooses a1 ∈ A1. Lastly, player 2 observes (θ, a1) and chooses a2 ∈ A2. We assume that A1, A2, and Θ

are finite and let p(θ) denote the probability of Nature choosing θ. Payoff function of player i ∈ {1,2}

is given by ui : A×Θ→R, where A = A1 × A2.

The game with third-party contracts is a three player extensive form game described by the follow-

ing sequence of events: Player 2 offers a contract f : A → R to a third-party. The third-party accepts

(denoted y) or rejects (denoted n) the contract. In case of rejection the game ends and the third-party

receives a fixed payoff of δ ∈R while player 2 receives −∞. In case of acceptance, player 1 and 2 play

the original game. We assume that throughout the entire game θ remains the private information of

player 2.

Since offering a contract that is rejected yields player 2 a very small payoff, the contract offer

will be accepted in all equilibria. Therefore, we can omit the third-party’s acceptance decision from

histories and represent an outcome of the game with third-party contracts as ( f ,θ, a1, a2). The pay-

off functions in the game with contracts are given by v1
(

f , a1, a2,θ
)
= u1 (a1, a2,θ) , v2

(
f , a1, a2,θ

)
=

u2 (a1, a2,θ)− f (a1, a2) , v3
(

f , a1, a2,θ
)
= f (a1, a2), where v3 is the payoff function of the third-party.

Note that the payoff function of the third-party assumes that he is neutral towards the outcome of

6This is also related to the fact that they assume the agents play a simultaneous move game whereas we focus on se-
quential move games.
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the game, i.e., he cares only about the transfer. In Section 4.2 we relax this assumption and allow the

third-party also to have intrinsic preferences over the outcomes of the original game.

The game is with renegotiable contracts if the contracting parties can renegotiate the contract

after player 1 plays a1 and before player 2 chooses a2. We assume that player 2, who is the informed

party, initiates the renegotiation process by offering a new contract, which the third-party may accept

or reject. If the third-party rejects the renegotiation offer g , then player 2 chooses a2 ∈ A2 and the

outcome is payoff equivalent to
(

f ,θ, a1, a2
)
. If he accepts, then player 2 chooses a2 ∈ A2 and the

outcome is payoff equivalent to
(
g ,θ, a1, a2

)
.

We say that the game is with observable contracts if the initial contract is observed by player 1.

Otherwise, we say that the game is with unobservable contracts. In other words, there are four pos-

sible games with third-party contracts depending upon whether the contract is renegotiable or non-

renegotiable and observable or unobservable. Given an original game G , we will denote the game

with non-renegotiable and observable contracts with ΓNO , non-renegotiable and unobservable con-

tracts with ΓNU , renegotiable and observable contracts with ΓRO , and renegotiable and unobservable

contracts with ΓRU .

In any original game or game with contracts, a behavior strategy for player i ∈ {1,2,3} is defined

as a set of probability measures βi ≡ {βi (I ) : I ∈Ii }, where Ii is the set of information sets of player i

and βi (I ) is defined on the set of actions available at information set I . One may write βi (h) for βi (I )

for any history h ∈ I . By a system of beliefs, we mean a set µ≡ {µ(I ) : I ∈Ii for some i }, where µ(I ) is a

probability measure on I . A pair (β,µ) is called an assessment. An assessment (β,µ) is said to be a per-

fect Bayesian equilibrium (PBE) if (1) each player’s strategy is optimal at every information set given

her beliefs and the other players’ strategies; and (2) beliefs at every information set are consistent with

observed histories and strategies.7

We will limit our analysis to pure behavior strategies, and hence a strategy profile of the origi-

nal game G is given by (b1,b2) ∈ A1 × A
A1×Θ

2 .8 For any behavioral strategy profile (b1,b2) of G , de-

fine the expected payoff of player i = 1,2 as Ui (b1,b2) =
∑

θ∈Θ p(θ)ui (b1,b2(b1,θ),θ) and the best

response correspondences as BR1(b2) = argmaxa1∈A1
U1(a1,b2) for all b2 ∈ A

A1×Θ

2 and BR2(a1,θ) =

argmaxa2∈A2
u2(a1, a2,θ) for all (a1,θ) ∈ A1 ×Θ. We say that a strategy profile (b∗

1 ,b∗
2 ) is a Bayesian

Nash equilibrium of G if b∗
1 ∈ BR1(b∗

2 ) and b∗
2 (b∗

1 ,θ) ∈ BR2(b∗
1 ,θ) for all θ. The difference between a

perfect Bayesian equilibrium and a Bayesian Nash equilibrium, of course, is that the former requires

player 2 to best respond to every action of player 1, whereas the latter requires best response to only

the equilibrium action. Therefore, every perfect Bayesian equilibrium is a Bayesian Nash equilibrium

but not conversely.

For any behavior strategy profile (b1,b2) in G , we say that an assessment (β,µ) in Γk (G), k =

NO, NU ,RO,RU , induces (b1,b2) if in Γk (G) player 1 plays according to b1 and, after the equilibrium

contract, player 2 plays according to b2.9

Our ultimate aim is to characterize renegotiation-proof equilibria, in which the equilibrium con-

tract is not renegotiated after any history.10 More precisely,

7See Fudenberg and Tirole (1991) for a precise definition of perfect Bayesian equilibrium.
8In Section 4.1 we relax this and allow also mixed strategies. This introduces some technical difficulties but our main

results go through.
9Note that in ΓRO (G) and ΓRU (G), player 2 may choose an action a2 ∈ A2 either without renegotiating the initial contract

or after attempting renegotiation.
10We follow the previous literature in our definition of renegotiation-proof equilibrium. See, for example, Maskin and

Tirole (1992) and Beaudry and Poitevin (1995).
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Definition 1 (Renegotiation-Proof Equilibrium). A perfect Bayesian equilibrium (β∗,µ∗) of ΓRO(G)

and ΓRU (G) is renegotiation-proof if the equilibrium contract is not renegotiated after any a1 ∈ A1

and θ ∈Θ.

We say that a strategy profile (b1,b2) of the original game G can be supported with observable

and non-renegotiable contracts if there exists a perfect Bayesian equilibrium of ΓNO(G) that induces

(b1,b2). Similarly, a strategy profile (b1,b2) of the original game G can be supported with observ-

able renegotiation-proof contracts if there exists a renegotiation-proof perfect Bayesian equilibrium

of ΓRO(G) that induces (b1,b2). Similarly for unobservable and non-renegotiable and unobservable

renegotiation-proof contracts.

AN EXAMPLE: ENTRY DETERRENCE

In order to illustrate our main query as well as some of our results later on, we introduce a very

simple entry game in this section (See Figure 1). Player 1 is a potential entrant, who may enter (E ) or

stay out (O) and player 2, who is the incumbent, may fight (F ) or accommodate (A) entry.

1

0,m

N

2 2

−1, y 2, x −1, w 2, z

O E

cl ch

F A F A

Figure 1: Entry Game

We assume that fighting is costly, and it is costlier for the high cost incumbent (type ch) than for

the low cost (type cl ): z−w > x−y > 0. The entrant believes that the incumbent’s type is low cost with

probability p ∈ (0,1).

The unique perfect Bayesian equilibrium (PBE) of this game is (E , A A), i.e., the entrant enters

and both types of the incumbent accommodate. We assume that the monopoly profit is larger than

the highest possible profit following entry, i.e., m > z. In other words, the incumbent would ben-

efit from deterring entry, and one way of achieving this would be to sign a contract with a third-

party that makes fighting optimal. For example, the following contract makes playing F F optimal:

f (F ) = δ, f (A) = δ+ (z −w ). Is such a contract renegotiation-proof? If not, can entry still be deterred

with renegotiation-proof contracts? In what follows we will answer these questions and also char-

acterize the equilibrium outcomes that can be supported with third-party contracts under different

assumptions regarding their observability and renegotiation-proofness.
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3 Renegotiation-Proof Contracts

In this section we will provide results that help identify the set of outcomes of any original game G

that can be supported by renegotiation-proof perfect Bayesian equilibria of the game with observable

(or unobservable) and renegotiable contracts.

In order to decide whether to accept a new contract offer in the renegotiation phase of the game

with renegotiable contracts, the third-party forms beliefs regarding player 2’s strategy under the new

contract and compares his payoffs from the old and the new contracts. In equilibrium, these be-

liefs must be such that player 2’s strategies are sequentially rational, i.e., incentive compatible, under

the new contract. Let C = R
A1×A2 and define incentive compatibility as a property of any contract-

strategy pair ( f ,b2)∈C × A
A1×Θ

2 .

Definition 2 (Incentive Compatibility). ( f ,b2) ∈C × A
A1×Θ

2 is incentive compatible if

u2(a1,b2(a1,θ),θ)− f (a1,b2(a1,θ)) ≥ u2(a1,b2(a1,θ′),θ)− f (a1,b2(a1,θ′)) for all a1 ∈ A1 and θ,θ′ ∈Θ.

We say that a strategy b2 is incentive compatible if there is a contract f such that ( f ,b2) is incentive

compatible. We can obtain a sharp characterization of incentive compatible strategies if we impose

more structure on the original game. To this end, let %θ be a linear order on Θ and %2 a linear order

on A2, and denote their asymmetric parts by ≻θ and ≻2, respectively.

Definition 3 (Increasing Differences). u2 : A1 × A2 ×Θ → R is said to have increasing differences in

(%θ,%2) if for all a1 ∈ A1, θ%θ θ
′ and a2 %2 a′

2 imply that u2(a1, a2,θ)−u2(a1, a2,θ′) ≥ u2(a1, a′
2,θ)−

u2(a1, a′
2,θ′). It is said to have strictly increasing differences if θ≻θ θ

′ and a2 ≻2 a′
2 imply that u2(a1, a2,θ)−

u2(a1, a2,θ′)> u2(a1, a′
2,θ)−u2(a1, a′

2,θ′).

Definition 4 (Increasing Strategies). b2 : A1 ×Θ→ A2 is called increasing in (%θ ,%2) if for all a1 ∈ A1,

θ%θ θ
′ implies that b2(a1,θ)%2 b2(a1,θ′). Denote the set of all increasing b2 by B+

2 .

For the rest of the paper, we restrict attention to games G in which there exist a linear order on Θ

and a linear order on A2 such that u2 has strictly increasing differences in (%θ ,%2). Standard argu-

ments show that under increasing differences, incentive compatibility implies that b2 is increasing.

The following proposition states this result and shows that its converse also holds.

Proposition 1. If u2 : A1×A2×Θ→R has strictly increasing differences, then a strategy b2 : A1×Θ→ A2

is incentive compatible if and only if it is increasing.

The only if part follows from a standard argument in contract theory. In order to prove the if

part fix an arbitrary a1 ∈ A1, let the number of elements of Θ be n, and order its elements so that

θn %θ θ
n−1 %θ · · ·θ

2 %θ θ
1. For any contract-strategy pair ( f ,b2), define f (a1) j = f (a1,b2(a1,θ j )), j =

1, . . . ,n, and let, with an abuse of notation, f (a1) ∈ Rn be the vector whose j th component is given

by f (a1) j . When u2 has increasing differences, incentive compatibility of ( f ,b2) is equivalent to the

local upward and downward constraints:11

f (a1) j − f (a1) j+1 ≤ u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j ), j = 1, . . . ,n −1

− f (a1) j−1 + f (a1) j ≤ u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j−1),θ j ), j = 2, . . . ,n

11See, for example, Bolton and Dewatripont (2005), p. 78.
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For any a1 ∈ A1, we can write these inequalities in matrix form as D f (a1) ≤ ~U2(a1,b2), where D is a

matrix of coefficients and ~U2(a1,b2) a column vector with 2(n −1) components, whose component

2 j −1 is given by

~U2(a1,b2)2 j−1 = u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j )

and component 2 j is given by

~U2(a1,b2)2 j = u2(a1,b2(a1,θ j+1),θ j+1)−u2(a1,b2(a1,θ j ),θ j+1)

Therefore, the proof will be completed if we can show that if u2 has strictly increasing differences

and b2 increasing, then there exists f (a1) ∈Rn such that D f (a1) ≤ ~U2(a1,b2). This follows easily from

Gale’s theorem for linear inequalities (Mangasarian (1994), p. 33).

We next define our renegotiation-proofness concept, which follows from the definition of rene-

gotiation-proof perfect Bayesian equilibrium (Definition 1).

Definition 5 (Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈C × A

A1×Θ

2 is renegotiation-proof if for

all a1 ∈ A1 and θ ∈Θ for which there exists an incentive compatible (g ,b2) such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (b∗

2 (a1,θ)) (1)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (2)

In words, if, for some (θ, a1), there is a contract g and an incentive compatible continuation play

b2 such that player 2 prefers g over f (i.e., (1) holds), there must exist a belief of the third-party (over

θ) under which it is optimal to reject g , which is implied by (2).12

Finally, we define a renegotiation-proof strategy as,

Definition 6 (Renegotiation-Proof Strategy). A strategy b2 ∈ A
A1×Θ

2 is renegotiation-proof if there ex-

ists an f ∈ C such that ( f ,b2) is incentive compatible and renegotiation-proof. Denote the set of all

renegotiation-proof strategies by B R
2

It is not difficult to see that Definitions 5 and 6 are indeed the correct definitions to work with, in

the sense that they identify the conditions that any contract f and strategy b2 must satisfy to be part

of a renegotiation-proof perfect Bayesian equilibrium of ΓRO(G) or ΓRU (G). Indeed, if a strategy b2

of the original game is not renegotiation-proof, then there is no renegotiation-proof perfect Bayesian

equilibrium (of the game with renegotiable contracts) in which a contract f is offered and b2 is played

without renegotiating f . This simply follows from the fact that if ( f ,b2) is not renegotiation-proof,

then there is (a1,θ) and a contract g that would be accepted for any belief of the third-party at the

renegotiation stage and increase player 2’s payoff. In other words, f will be renegotiated after (a1,θ)

and therefore the equilibrium is not renegotiation-proof. In fact, the converse of that statement also

holds: If b2 is renegotiation-proof, we can construct a perfect Bayesian equilibrium of the game with

renegotiable contracts in which the equilibrium contract is not renegotiated after any a1 and θ. Of

12This definition allows beliefs to be arbitrary following an off-the-equilibrium renegotiation offer. An alternative defi-
nition would be to require the beliefs to satisfy intuitive criterion. In Section 4.3 we show that our results go through with
minor modifications when we adopt this stronger version.
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course, the equilibrium contract and b2 will also have to satisfy other conditions for them to be part

of an equilibrium, but these would depend on whether the contracts are observable or unobservable,

an issue which we will address in Section 5.

Our main result in this section characterizes renegotiation-proof contracts and strategies. In order

to understand this result one should first realize that condition (2) in Definition 5 is satisfied trivially

if the strategy b2 does not lead to a higher surplus for the contracting parties after (a1,θ). In other

words, for each a1 and i = 1, . . . n, we need to check renegotiation-proofness of ( f ,b∗
2 ) only against

strategies that belong to the following set:

B(a1, i ,b∗
2 ) = {b2 ∈ A

A1×Θ

2 : b2 is increasing and u2(a1,b2(a1,θi ),θi ) >u2(a1,b∗
2 (a1,θi ),θi )}. (3)

Third, by Definition 5, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1, . . . n,

and incentive compatible (g ,b2) such that u2(a1,b2(a1,θi ),θi )−g (a1)i >u2(a1,b∗
2 (a1,θi ),θi )− f (a1)i

and g (a1) j > f (a1) j for all j = 1, . . . ,n. As we have discussed after Proposition 1, when u2 has in-

creasing differences, incentive compatibility of (g ,b2) is equivalent to Dg (a1) ≤ ~U2(a1,b2). Therefore,

( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1, i , b2 and ε∈Rn such that

D( f (a1)+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ), ε≫ 0

These conditions can be written as [Ax ≫ 0,C x ≥ 0 has a solution x], once the vector x and ma-

trices A and C are appropriately defined. Motzkin’s theorem of the alternative then implies that

the necessary and sufficient condition for being renegotiation-proof is [A′y1 +C ′y2 = 0, y1 > 0, y2 ≥

0 has a solution y1, y2]. The fact that u2 has increasing differences can then be used to prove the

equivalence of this condition to the one stated in the following theorem.

Theorem 1. ( f ,b∗
2 )∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (4)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (5)

Proof. Similar to Theorem 2 in Gerratana and Koçkesen (2012).

Theorem 1 characterizes the conditions for which
(

f ,b∗
2

)
is renegotiation-proof. Our next step is

to find conditions for a strategy b∗
2 to be supported with renegotiation-proof contracts. The following

definition facilitates the exposition.

Definition 7. For any a1, i = 1, . . . ,n and b2 ∈B(a1, i ,b∗
2 ) we say that m(b2) ∈ {1,2, . . . ,n} is a blocking

type if

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

i−1∑

j=m(b2)

[
~U2(a1,b∗

2 )2 j−1 − ~U2(a1,b2)2 j−1
]

(6)
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or

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

m(b2)∑

j=i+1

[
~U2(a1,b∗

2 )2( j−1) − ~U2(a1,b2)2( j−1)
]

(7)

We obtain the following necessary conditions for a strategy b∗
2 to be renegotiation-proof.

Proposition 2. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type.

Proof. Similar to Proposition 3 in Gerratana and Koçkesen (2012).

The above condition becomes also sufficient for renegotiation-proofness with an additional re-

quirement about the relation of blocking types for different renegotiation opportunities.

Proposition 3. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type m(bi

2) such that k < l , m(bk
2 ) > k, and m(bl

2) < l imply m(bk
2 ) ≤

m(bl
2).

Proof. Similar to Proposition 4 in Gerratana and Koçkesen (2012).

The conditions given in Proposition (2) and (3) coincide when player 2 has only two types. There-

fore, Proposition (2) is a full characterization result for such games. Although, they fall short of pro-

viding a full characterization in games with more than two types, they help us do so in environments

with more structure as we demonstrate in Section 6.

EXAMPLE: ENTRY DETERRENCE

Let ch ≻θ cl and A ≻2 F and observe that z−w > x− y implies that u2 has strictly increasing differ-

ences. Proposition 1 therefore implies that the set of incentive compatible strategies are {F F,F A, A A}.

Are there strategies renegotiation-proof? A A is clearly renegotiation-proof because both types are

best responding and hence B(E ,cl , A A) =B(E ,ch , A A) = ;. How about F F ? For both types playing

A is a better response and hence B(E ,cl ,F F ) = {A A} and B(E ,ch ,F F ) = {F A, A A}. Is there a blocking

type for cl , i.e., does (7) hold for m(b2) = ch? Since

u2(E , A,cl )−u2(E ,F,cl ) = x − y > u2(E ,F,ch)−u2(E ,F,ch)− (u2(E , A,ch)−u2(E , A,ch)) = 0

the answer is no, i.e., F F is not renegotiation-proof. Is F A renegotiation-proof? In this caseB(E ,cl ,F A)=

{A A} and B(E ,ch ,F A)=;. Is there a blocking type for cl ? Since

u2(E , A,cl )−u2(E ,F,cl ) = x − y ≤ u2(E , A,ch)−u2(E ,F,ch)− (u2(E , A,ch)−u2(E , A,ch)) = z −w

the answer is yes. Therefore, the set of renegotiation-proof strategies is {F A, A A}. In other words,

renegotiation-proofness in this example is satisfied whenever the high cost type best responds. Also

note that for the high cost type, not best responding is costlier, i.e., z −w > x − y . Credible commit-

ment, in this example, requires best responding when it is very costly no to do so. Finally, an example

of a contract that supports F A is f (F ) = δ, f (A) = δ+ (x − y).
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4 Extensions

So far we have assumed that the original game has only two stages and conducted the equilibrium

analysis in pure strategies. Furthermore, we have assumed that the third-party is neutral. In this

section we show that all our main results can be generalized to a much more general class of extensive

form games with incomplete information and they are true in mixed strategy equilibria as well. We

also discuss how our results are modified when third-parties are not neutral. Finally, we present the

implications of a stronger definition of renegotiation-proofness.

4.1 General Extensive Form Games

Although we have stated our results for two stage games in which only player 2 has private informa-

tion and has the right to sign a contract with a third-party, we can generalize them to arbitrary finite

extensive form games with incomplete information and perfect recall. The only restriction we impose

is that players’ payoff functions in the original game exhibit increasing differences in a sense that we

will make precise.

Define the original game G as an extensive form game with incomplete information in which

player i ∈ {1, . . . ,n} privately learns his type θi ∈Θi at the beginning of the game. Assume that Nature

chooses types independently and let |Θi | = ni . After the types are determined players start taking

actions. We denote the set of histories (excluding the moves of Nature at the beginning) by H and

denote a typical history by h = (a0, a1, a2, . . . , ak ), where a0 is the initial node (or empty history) and

a j denotes the j th action taken in this history. Payoff function of player i is given by ui : Z ×Θ→ R,

where Z is the set of (finite) terminal histories and Θ is the set of all type profiles θ = (θ1, . . . ,θn ).

The set of pure strategies of player i is given by Si and a mixed strategy for player i is a probability

distribution over Si for each θi , i.e., a mapping σi : Θi →∆(Si ). A pure strategy profile is denoted by s

and mixed strategy profile by σ. Denote the set of all information sets at which player i moves by Ii

and the set of all information sets in the game by I . At any information set I ∈Ii , player i has a set of

pure strategies available for the rest of the game, denoted Si |I and defined as the restriction of Si to

information sets of player i that follows (and includes) I . A belief system is a collection of probability

measures m = {m(I ) : I ∈ I }, where m(I ) for I ∈ Ii is defined over I ×Θ−i . A pair (σ,m) is called an

assessment.13 We say that an assessment is consistent if beliefs at every information set are derived

from prior beliefs, observed histories, and strategies using Bayes’ Law whenever possible.

We assume that for every player i and information set I ∈Ii , Si |I is a chain. In other words, there

is a binary relation %i on Θi and%si on Si that is reflexive, antisymmetric, transitive, and complete.14

We denote the asymmetric parts of %i and %si by ≻i and ≻si , respectively.

Fix a player i and an information set I ∈Ii . Given an history h ∈ I , if the type profile is θ, player i

plays si ∈ Si |I , and other players play s−i ∈ S−i |I , payoff of player i can be written as ui (h, si , s−i ,θi ,θ−i ).15

Definition 8 (Increasing Differences). We say that an original game G has increasing differences if for

13The original game as well as the games with contracts that we will define shortly have perfect recall and therefore for
every behavior strategy there is an outcome equivalent mixed strategy and vice versa. Therefore, we are free to work with
either the behavior or mixed strategies, whichever more convenient.

14Note that any chain is a lattice. Also, we omit the dependence of %si on I to avoid notational clutter.
15We can do that by finding the terminal history z(h, si , s−i ) that is reached when players play according to (si , s−i ) after

h and defining ui (h, si , s−i ,θi ,θ−i ) = ui (z(h, si , s−i ),θi ,θ−i ).
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any i ∈ N , I ∈Ii , θi %i θ
′
i

and si %si s′
i

imply that

ui (h, si , s−i ,θi ,θ−i )−ui (h, s′i , s−i ,θi ,θ−i ) ≥ ui (h, si , s−i ,θ′i ,θ−i )−ui (h, s′i , s−i ,θ′i ,θ−i )

for all h ∈ I , s−i ∈ S−i |I , and θ−i ∈ Θ−i . It is said to have strictly increasing differences if θi ≻i θ
′
i

and

si ≻si s′
i

imply that

ui (h, si , s−i ,θi ,θ−i )−ui (h, s′i , s−i ,θi ,θ−i ) > ui (h, si , s−i ,θ′i ,θ−i )−ui (h, s′i , s−i ,θ′i ,θ−i )

for all h ∈ I , s−i ∈ S−i |I , and θ−i ∈Θ−i .

In other words, an original game G has increasing differences if the payoff functions have increas-

ing differences in (si ,θi ) ∈ Si |I ×Θi at every information set I irrespective for how the other players

play and what the types of the other players are. We assume that the original game G has strictly

increasing differences. Examples of games with increasing differences include repeated ultimatum

bargaining and chain store games.

The induced game with non-renegotiable and renegotiable contracts are straightforward gener-

alizations of their counterparts for two stage games. Each player i independently offers a contract

fi : Z → R to a distinct third-party ti , who accepts or rejects it. In case of rejection the game ends, ti

receives a fixed payoff of δi ∈ R, and player i receives −∞. In case of acceptance Nature chooses θ

and players in N play G .

We assume that only player i observes his type θi , and that this is the only source of asymmetric

information between i and the third-party ti . In other words, at any point in the game both the main

player and his third-party observe the same histories. The payoff functions are given by vi ( f , z,θ =

ui (z,θ)− fi (z), vti
( f , z,θ) = fi (z).

One of the conditions that strategies must satisfy in any perfect Bayesian equilibrium of the game

with contracts, is that player i ’s strategy must be sequentially rational, or incentive compatible, under

the contract. Increasing differences imply that this is equivalent to strategies being increasing. Define

a mixed strategy as increasing if any pure strategy in its support is increasing in the type. We have the

following counterpart to Proposition 1.

Proposition 4. If the original game G has strictly increasing differences, then a mixed strategy is incen-

tive compatible if and only if it is increasing.

Proof. Omitted.

The game is with renegotiable contracts if the contracting parties can renegotiate the contract at

any point throughout the game. At any information set I ∈ Ii player i either offers a new contract

gi : Z →R to the third-party ti or chooses an action. If player i offers a new contract, the third-party

either accepts or rejects it.

We retain the same definition of renegotiation-proofness. Fix a consistent assessment (σ,m). We

say that a contract strategy pair ( fi ,σi ) is renegotiation-proof at (σ−i ,m), if whenever there is a con-

tract gi and an incentive compatible continuation play σ′
i

such that player i of type θi strictly prefers

(gi ,σ′
i
) over ( fi ,σi ) at information set I , there must exist a type θ′

i
for which expected transfers under

( fi ,σi ) at least as high as the transfers under (gi ,σ′
i
).

12



In order to state the counterpart to our main result for renegotiation-proof contracts we need a

few more definitions. Fix a consistent assessment (σ,m) and let Uσ,m
i

(σ′
i
,θi |I ) be the expected payoff

of player i of type θi to playing mixed strategy σ′
i
∈∆(Si |I ) conditional on reaching information set I .

Similarly, let Fσ,m
i

(σ′
i
|I ) be the expected transfers.

For any i ∈ N , I ∈ Ii , consistent assessment (σ,m), and σ′
i

: Θi → ∆(Si |I ) define ~Uσ,m
i

(σ′
i
|I ) as a

column vector with 2(ni −1) components, where component 2 j −1 is given by Uσ,m
i

(σ′
i
(θ

j

i
),θ j |I )−

Uσ,m
i

(σ′
i
(θ

j+1
i

),θ j |I ) and component 2 j is given by Uσ,m
i

(σ′
i
(θ

j+1
i

),θ j+1, |I )−Uσ,m
i

(σ′
i
(θ

j

i
),θ j+1|I ), j =

1,2, . . . ,ni−1. Similarly, define~Fσ,m
i

(σ′
i
|I ) as the ni vector whose j th component is given by Fσ,m

i
(σ′

i
(θ

j

i
)|I ),

j = 1,2, . . . ,ni −1.16 Let

Σ̂i (I , j ,σi ) = {σ′
i :Θi →Σi |I : σ′

i is increasing and Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )>Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )}

be the set of all mixed strategies at information set I that is increasing and increases the payoff of

player i type j over his payoff under σi .

Theorem 1 generalizes in a quite straightforward way:

Theorem 2. Fix a consistent assessment (σ,m) and i ∈ N . ( fi ,σi ) ∈ C ×Σi is renegotiation-proof at

(σ−i ,m) if and only if for any I ∈ Ii , j = 1, . . . ,ni , and σ′
i
∈ Σ̂i (I , j ,σi ) there exists a k ∈ {1,2, . . . , j −1}

such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

j−1∑

t=k

~Uσ,m
i

(σ′
i |I )2t−1 ≤~Fσ,m

i
(σi |I )k −~Fσ,m

i
(σi |I ) j (8)

or there exists an l ∈ { j +1, j +2, . . . ,ni } such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

l∑

t= j+1

~Uσ,m
i

(σ′
i |I )2(t−1) ≤~Fσ,m

i
(σi |I )l −~Fσ,m

i
(σi |I ) j (9)

Proof. Omitted.

Once the definition of a blocking type is appropriately modified (see Definition 7), Propositions 2

and 3 also generalize in a straightforward manner.

4.2 Interested Third-Party

In our model we assumed that the third-party has no interest in the outcome of the original game

other than the transfer from (or to) player 2. This is obviously not always the case with third-party

contracts. For example, the government in its contractual relationship with a central bank is defi-

nitely interested in the outcome of the game between the central bank and the public. Similarly, the

European Union in its contractual relationships with Airbus is interested in the entry game played by

Airbus and Boeing. We can easily think of many other instances of games with third-party contracts

in which the third-party itself is interested in the outcome of the game. How do our results change if

this is the case? The answer turns out to be straightforward and intuitive.

Let u3(a1, a2,θ) be the third-party’s payoff function so that under contract f his payoff would be

u3(a1, a2,θ)+ f (a1, a2). We say that ( f ,b∗
2 ) is renegotiation-proof if for all a1 ∈ A1 and θ ∈Θ for which

16Note that independence of types across players implies that the beliefs of player i over h and θ−i , i.e., m(h,θ−i |I ), do
not depend on θi . For the same reason expected transfers to pure strategy si do not depend on θi .
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there exists an incentive compatible (g ,b2) such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (b∗

2 (a1,θ))

there exists a θ′ ∈Θ such that

u3(a1,b∗
2 (a1,θ′),θ′)+ f (a1,b∗

2 (a1,θ′)) ≥ u3(a1,b2(a1,θ′),θ′)+ g (a1,b2(a1,θ′))

In the model with neutral third-party a renegotiation opportunity arises whenever there is an in-

creasing strategy that increases player 2’s payoff u2(a1, a2,θ), which is the total surplus available to

player 2 and the third-party in that model. When the third-party is no longer neutral, total surplus

available becomes u2(a1, a2,θ)+u3(a1, a2,θ). Accordingly, a renegotiation opportunity arises when-

ever there is an increasing strategy that increases total surplus u2(a1, a2,θ)+u3(a1, a2,θ). Therefore,

we modify the definition of B(a1, i ,b∗
2 ) as the set of strategies b2 that are increasing and satisfy

u2(a1,b2(a1,θi ),θi )+u3(a1,b2(a1,θi ),θi )> u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b∗

2 (a1,θi ),θi )}.

We can now state the modified version of Theorem 1:

Theorem 3. ( f ,b∗
2 ) is renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and b2 ∈

B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b2(a1,θk ),θk )−u3(a1,b∗

2 (a1,θk ),θk )+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (10)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b2(a1,θl ),θl )−u3(a1,b∗

2 (a1,θl ),θl )

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (11)

Proof. Omitted.

Note that an interested third-party introduces two changes into the result: First, a renegotiation

opportunity arises only if it increases the total surplus rather than just player 2’s payoff. This might

in fact help a contract become renegotiation-proof, if, for example, the third-party and player 2 have

completely opposite preferences. Second, compared with (4) and (5), inequalities (10) and (11) have

extra terms on the left hand side, which might help or hurt a contract become renegotiation-proof

depending upon the sign of those terms.

Again, once the definition of a blocking type is appropriately modified, Propositions 2 and 3 can

be easily generalized to the case of non-neutral third-party.
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4.3 Strong Renegotiation-Proofness

Our definition of renegotiation-proofness follows directly from the assumed game form for the rene-

gotiation procedure, i.e., player 2, who is the the informed party, makes a new contract offer and the

third-party, who is uninformed, accepts or rejects. In a renegotiation-proof equilibrium, the contract

is never renegotiated, and therefore any renegotiation offer is an out-of-equilibrium event. This al-

lows us to specify the beliefs of the third-party freely after a new contract offer. This may be found

unreasonable and a more plausible alternative could be to require beliefs satisfy the conditions spec-

ified in the intuitive criterion as defined by Cho and Kreps (1987).

In our setting, intuitive criterion requires that, given an equilibrium contract strategy pair ( f ,b∗
2 )

and following a renegotiation offer (g ,b2), beliefs put positive probability only on types for which

(g ,b2) is not equilibrium-dominated, i.e., only on those types θ′ for which

u2(a1,b2(a1,θ′),θ′)− g (a1,b2(a1,θ′)) ≥ u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′))

This leads to the following definition.

Definition 9 (Strong Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is strongly renegoti-

ation-proof if for all a1 ∈ A1 and θ ∈ Θ for which there exists an incentive compatible (g ,b2) such

that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (b∗

2 (a1,θ)) (12)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (13)

and

u2(a1,b2(a1,θ′),θ′)− g (a1,b2(a1,θ′)) ≥ u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′)) (14)

This is exactly the same as renegotiation-proofness except that it adds condition (14), which al-

lows us to construct beliefs that satisfy intuitive criterion after any renegotiation offer. It can be shown

that when we work with this definition, Theorem 1 needs to be modified as follows.

Theorem 4. ( f ,b∗
2 ) is strongly renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )−min{0,u2(a1,b2(a1,θk ),θk )−u2(a1,b∗

2 (a1,θk ),θk )}

+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (15)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1b∗
2 (a1,θi ),θi )−min{0,u2(a1,b2(a1,θl ),θl )−u2(a1,b∗

2 (a1,θl ),θl )}

+

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (16)

Proof. Omitted.
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It is also easy to show Propositions 2 and 3 go through with a minor modification similar to the

one made in Theorem 4.

5 Equilibrium Outcomes of Games with Contracts

There may be legal or technological constraints that might render contracts non-renegotiable and

therefore outcomes that can be supported by non-renegotiable contracts are of interest on their own.

Furthermore, understanding non-renegotiable contracts will help place our results within the litera-

ture and allow us to isolate the effects of renegotiation. Similarly, and irrespective of whether a con-

tract is renegotiable, there may be valid reasons why a contract maybe observable or unobservable.

Legal contracts between a firm and a bank, or a government and an international body, and many

compensation contracts are observable yet subject to renegotiation if the parties find it in their ben-

efit to do so. Other contracts can be either secret or subject to renegotiation before the game begins,

i.e., they can be unobservable. In this section we will present results regarding the outcomes that can

be supported under different assumptions about the contracts.

5.1 Observable Contracts

Let us assume that the contract signed between player 2 and the third-party before the game begins

is observable to player 1 but may or may not be renegotiated after player 1 moves in the game.

5.1.1 Non-renegotiable Contracts

If the contracts are observable but not renegotiable, then we can show that player 2 can obtain the

best payoff possible given that player 2 plays an increasing strategy and player 1 best responds. More

precisely, define the best Stackelberg payoff of player 2 as Ū B
2 = maxb2∈B+

2
maxb1∈BR1(b2)U2(b1,b2) and

the worst Stackelberg payoff as Ū W
2 = maxb2∈B+

2
minb1∈BR1(b2)U2(b1,b2).

Proposition 5. If contracts are observable, then Ū B
2 −δ can be supported with non-renegotiable con-

tracts.

The proof of this result is quite easy. In the definition of the best Stackelberg payoff, player 2 is

playing the best increasing strategy, say b∗
2 , given that player 1 is playing a best response that is most

favorable for player 2. Proposition 1 implies that b∗
2 is incentive compatible, i.e., there is a contract,

say f ∗, that makes it optimal to play. It is easy to show that there is a perfect Bayesian equilibrium of

the game with observable and non-renegotiable contracts in which player 2 offers f ∗ with expected

value δ, player 1 plays the most favorable best response to that, say b∗
1 , and player 2 plays b∗

2 (b∗
1 ,θ)

after ( f ∗,b∗
1 ,θ). Expected payoff of player 2 in such an equilibrium is Ū B

2 −δ.

We can also show that player 2 cannot get a payoff that is smaller than his worst Stackelberg payoff.

Proposition 6. If contracts are observable, then Ū W
2 −δ is the smallest payoff that can be supported

with non-renegotiable contracts.

In order to see why let b̂2,a1 argminb2∈B+
2

U (a1,b2) for any a1 ∈ A1. In other words, for any a1,

b̂2,a1 is the worst increasing strategy for player 1 that player 2 can play. Since b̂2,a1 is increasing,

it can be shown that there is a contract that makes it uniquely optimal to play. Now let b∗
1 (b2) ∈
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argminb1∈BR1(b2) U2(b1,b2), b∗
2 ∈ argmaxb2∈B+

2
U2(b∗

1 (b2),b2), and a∗
1 = b∗

1 (b∗
2 ). Note that U2(a∗

1 ,b∗
1 ) =

Ū W
2 and suppose, for contradiction, that player 2 gets a payoff that is strictly smaller than Ū W

2 −δ.

We show that there exists a contract that makes it uniquely optimal to play b∗
2 (a∗

1 ,θ) after a∗
1 and

b̂2,a1(a1,θ) after any other a1. If Player 2 offers this contract, player 1 must play a best response to

b∗
2 . This is because for any a1 ∉ BR1(b∗

1 ), we have U1(br1(b∗
2 ),b∗

2 ) >U1(a1,b∗
2 ) ≥U1(a1, b̂2,a1 ). There-

fore, deviation to such a contract yields a gross payoff of at least U2(a∗
1 ,b∗

1 ) = Ū W
2 and a net payoff

arbitrarily close to Ū W
2 −δ, a contradiction.

Of course, we have full characterization if player 1’s best response correspondence is single-valued,

i.e., BR1(b2) is a singleton for any b2 ∈ B+
2 : The unique equilibrium payoff of player 2 that can be sup-

ported with observable and non-renegotiable contracts is Ū B
2 −δ.

5.1.2 Renegotiable Contracts

If the contracts are observable and renegotiable, then player 2 can again achieve his Stackelberg pay-

off, except that the definition of this payoff must reflect the fact that player 2 plays a renegotiation-

proof strategy. Define the best and worst renegotiation-proof Stackelberg payoffs of player 2 as Ū BR
2 =

maxb2∈B R
2

maxb1∈BR1(b2)U2(b1,b2) and the worst Stackelberg payoff asŪ W R
2 = maxb2∈B R

2
minb1∈BR1(b2)U2(b1,b2)

and note that the difference in the definitions comes from the fact that player 2 has to play a renego-

tiation-proof strategy.

Proposition 7. If contracts are observable, then Ū BR
2 −δ can be supported with renegotiation-proof

contracts.

The proof of this result also constructs an equilibrium in which player 2 receives the best Stack-

elberg payoff that he can get by playing a renegotiation-proof strategy. There is however a signifi-

cant complication in the proof compared with the proof of Proposition 5. When contracts are non-

renegotiable any deviation from the contract that induces the best Stackelberg outcome under in-

creasing strategies must still induce an increasing strategy. This implies that no deviation can yield a

higher payoff. When contracts are renegotiable a deviation may or may not induce a renegotiation-

proof strategy and hence we cannot tell whether such a deviation can yield a payoff that is strictly

higher than the best Stackelberg payoff that can be obtained by a renegotiation-proof strategy.

What gives us the result is a version of the “renegotiation-proofness principle” that is valid in a

class of equilibria.

Definition 10. We say that a perfect Bayesian equilibrium (β,µ) of the game with renegotiable con-

tracts has conservative beliefs if

β2( f , a1,θ) = g ∈C ,β2( f , a1,θ, g , y) = bg (a1,θ),β2( f , a1,θ, g ,n) = b f (a1,θ),β3(I3( f , a1,θ)) = y

imply g (bg (a1,θ)) ≥ f (b f (a1,θ)).

In other words, whenever, in equilibrium, type θ renegotiates the contract from f to g , the third-

party should not expect a decrease in the transfer from that type.

Lemma 1 (Renegotiation-Proofness Principle). Take any a perfect Bayesian equilibrium of the game

with renegotiable contracts and assume that it has conservative beliefs. Suppose that a contract f is
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renegotiated after some a1 and θ. Then, there exists a contract strategy pair that is incentive compatible,

renegotiation-proof, and induces the same outcome as f after a1.

This lemma tell us that in any equilibrium with conservative beliefs, one can achieve any outcome

that is achieved via renegotiation after a1 by using a renegotiation-proof contract.17 In the proof of

7 we construct an equilibrium with conservative beliefs that yields Ū BR
2 −δ. Lemma 1 implies that

there is no deviation that can be obtained via renegotiation, which cannot also be obtained via a

renegotiation-proof strategy, and this gives us the desired result.

We can again show that player 2 cannot get a payoff that is smaller than his worst Stackelberg

payoff that can be obtained with renegotiation-proof strategies.

Proposition 8. If contracts are observable, then Ū W R
2 −δ is the smallest payoff that can be supported

with non-renegotiable contracts.

Proof. Proof of this result is similar to that of Proposition 6 and omitted.

The above results provide sharp predictions for equilibrium outcomes of the games with observ-

able contracts. In particular, they show that third-party contracts play the role of a commitment

device to the extent that player 2’s strategy respect the constraints brought about by incentive com-

patibility, in the case of non-renegotiable contracts, and renegotiation-proofness, in the case of rene-

gotiable contracts. The implications of these results in terms of the equilibrium outcomes depend on

the specifics of the original game. We present some of these implications our running example and

further in Section 6.

EXAMPLE: ENTRY DETERRENCE

Assume that p 6= 2/3 so that player 1’s best response correspondence is single-valued:

br1(F F ) =O,br1(A A) = E ,br1(F A) =





O, p > 2/3

E , p < 2/3

Remember that the set of incentive compatible strategies is B+
2 = {F F,F A, A A} and the set of rene-

gotiation-proof strategies is B R
2 = {F A, A A}. Therefore, the Stackelberg payoff of player 2 given that

he plays an incentive compatible strategy is m, which he achieves by playing F F . Proposition 5 and

6 imply that this is the unique payoff that can be supported with observable and non-renegotiable

contracts. In other words, entry-deterrence is the unique equilibrium outcome. How about with RP

contracts? If p > 2/3, then the Stackelberg payoff is m, obtained by playing F A, whereas if p < 2/3, F A

does not deter entry and the best player 2 can do in this case is to play A A, with payoff px + (1−p)z.

In other words, if p > 2/3 unique equilibrium outcome is entry-deterrence and if p < 2/3 unique

equilibrium outcome is entry and accommodate.

5.2 Unobservable Contracts

We now assume that the initial contract between player 2 and the third party is not observable to

player 1. Again there are two possibilities: the contract could be renegotiable or non-renegotiable.

17This also implies that if there is an outcome (b∗
1 , (b∗

2 (θ))θ) achieved in an equilibrium with conservative beliefs and via
an equilibrium contract that is renegotiated, then there exists an equilibrium in which the same outcome is achieved via a
renegotiation-proof contract. In other words, what is called the “renegotiation-proofness” principle in the literature holds
as long as we limit ourselves to a certain class of equilibria. Whether it holds for all equilibria is an open question.
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5.2.1 Non-Renegotiable Contracts

If contracts are non-renegotiable, we have the following characterization.

Proposition 9. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with unobservable

and non-renegotiable contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is

increasing in (%θ ,%2).

This result shows that unobservable third-party contracts potentially enlarges the set of outcomes

that can arise in equilibrium. Furthermore, while earlier papers showed that, when there is no asym-

metric information, any Nash equilibrium of the original game can be supported with unobserv-

able contracts, this result shows that only the subset of Bayesian Nash equilibria in which the second

player plays an increasing strategy can be supported if, instead, there is asymmetric information.

This result also has an immediate corollary in terms of the outcomes that can be supported. For

any strategy profile (b1,b2) ∈ A1 × A
A1×Θ

2 , we define an outcome (a1, a2) ∈ A1 × AΘ

2 of G as a1 = b1 and

a2(θ) = b2(b1,θ). Define the individually rational payoff of player 1 as

U+
1 = max

a1∈A1

min
b2∈B+

2

U1(a1,b2). (17)

This is the best payoff player 1 can guarantee for herself in game G , given that player 2 plays an in-

creasing strategy.18 The following easily follows from Proposition 9.

Corollary 1. An outcome (a∗
1 , a∗

2 ) of the original game G can be supported with unobservable and non-

renegotiable contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2) U1(a∗
1 , a∗

2 ) ≥U+
1 .

Again, note that, in general, outcomes that are not perfect Bayesian equilibrium outcomes of the

original game can also be supported. This can be achieved by writing a contract that leads player 2 to

punish player 1 when he deviates from his equilibrium action. Since contracts cannot be conditioned

on θ and u2 has increasing differences, player 2 can only use punishment strategies that are increasing

in θ. The best that player 1 can do by deviating is therefore given by U 1, and his equilibrium payoff

cannot be smaller than this payoff. This is condition (2). Condition (1), on the other hand, simply

follows from the requirement that only Bayesian Nash equilibrium outcomes can be supported, and

hence, player 2 must be best responding along the equilibrium path.

Note that if θ were contractible as well, we would not need to limit the punishment strategies

to be increasing. In this case, condition (2) would have the individually rational payoff defined as

maxa1∈A1 min
b2∈A

A1×Θ
2

U1(a1,b2). In that case, the result would be the exact analog of those in models

without asymmetric information, i.e., Koçkesen and Ok (2004) and Koçkesen (2007).

We should also note that there are interesting environments in which non-contractibility of θ does

not restrict the set of outcomes that can be supported with non-renegotiable contracts. For example

if player 1’s payoff does not depend on θ, then the punishment does not have to depend on θ either.

Therefore, one can simply use a constant punishment after each deviation, which would be increas-

ing by construction. A second environment is games with externalities, in which u1 is increasing (or

decreasing) in a2. In this case, after any a1, the harshest punishment is the lowest (or highest) a2,

which is constant and hence increasing.

18We should also note that this is different from the definition of individually rational payoff used in the repeated games
literature, which is the minmax payoff rather than the maxmin payoff. The maxmin payoff is at most equal to the minmax
payoff.
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5.2.2 Renegotiable Contracts

Suppose now that the contracts are unobservable and renegotiable. The counterpart to Proposition 9

is the following:

Proposition 10. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with unobservable

and renegotiation-proof contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is

increasing and renegotiation-proof.

This result too has an immediate corollary. Define the best payoff player 1 can guarantee for her-

self in game G , given that player 2 plays a renegotiation-proof strategy asU R
1 = maxa1∈A1 minb2∈B R

2
U1(a1,b2).

We have the following corollary.

Corollary 2. An outcome (a∗
1 , a∗

2 ) of the original game G can be supported with unobservable and

renegotiation-proof contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2) U1(a∗
1 , a∗

2 ) ≥U R
1 .

In order to apply the results on unobservable contracts the crucial piece of information is the

individually rational payoff of player 1 given that player 2 plays an increasing or a renegotiation-proof

strategy. We illustrate how this can be done in Section 6.1 for a large class of games that we call

games with externalities. We show that in those games the only thing that distinguishes the case

of renegotiation-proof contracts from non-renegotiable contracts is that the highest type of player 2

must play a best response to any a1 under renegotiation-proof contracts, whereas the only restriction

is that he plays an increasing strategy in the case of non-renegotiable contracts.

EXAMPLE: ENTRY DETERRENCE

Individually rational payoffs of player 1 are given by

U+
1 = max

a1∈A1

min
b2∈B+

2

U1(a1,b2) =U1(O,F F ) = 0

U R
1 = max

a1∈A1

min
b2∈B R

2

U1(a1,b2) =





U1(O,F A) = 0, p > 2/3

U1(E , A A) = 2−3p, p < 2/3

Corollary 1 implies that (O,F F ) and (E , A A) can both be supported with unobservable and non-

renegotiable contracts. Corollary 2 implies that if p > 2/3 both (O,F A) and (E , A A) can be supported

with unobservable and RP contracts, whereas if p < 2/3 only (E , A A) can be supported.

6 Applications

6.1 Games with Externalities

We say that an original game G is a game with externalities if player 1’s payoff is monotonically in-

creasing or decreasing in player 2’s action, i.e., for any a1 and θ, a′
2 %2 a2 implies either u1(a1, a′

2,θ) ≥

u1(a1, a2,θ) or u1(a1, a′
2,θ) ≤ u1(a1, a2,θ).19 Such positive or negative externalities are very common

in economic models. Indeed, the class of games that satisfy these conditions includes Stackelberg

and entry games, sequential Bertrand games with differentiated products, monopolistic screening,

and ultimatum bargaining, among others.

19Note that player 1’s payoff may be increasing in a2 for some a1 and decreasing for others.
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Assume that contracts are unobservable. Fix a1 ∈ A1, let a2 (a2) be the smallest (largest) element

of A2, and define

b+
2 (a1,θ) =





a2, ∀θ if u1(a1, a2,θ) increasing in a2

a2, ∀θ if u1(a1, a2,θ) decreasing in a2

Note that this strategy is increasing in θ and it is the harshest punishment player 2 can inflict upon

player 1, i.e., b+
2 ∈ argminb2∈B+

2
U1(a1,b2) for all a1. In other words, the individually rational payoff

of player 1 given that player 2 plays an increasing strategy is given by U+
1 = maxa1 U1(a1,b+

2 ). We can

directly apply Corollary 1 and conclude that an outcome (a∗
1 , a∗

2 ) of the original game G with external-

ities can be supported with non-renegotiable contracts if and only if a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and

U1(a∗
1 , a∗

2 ) ≥U+
1 .

Which outcomes can be supported with unobservable and renegotiation-proof contracts? Propo-

sition 2 implies that the harshest punishment strategy b+
2 is not renegotiation proof.20 Using Propo-

sition 3 we can show that, if u1 is increasing in a2, the harshest renegotiation-proof punishment is to

make the highest type of player 2 play a best response, while the other types play the smallest a2 (see

Lemma 2 in Section 8). Similarly, if u1 is decreasing in a2, the harshest renegotiation-proof punish-

ment is to make the smallest type best respond and the other types play the largest a2.

More precisely, let bn
2 (a1) ∈ argmina2∈BR2(a1,θn ) u1(a1, a2,θn) and b1

2(a1)∈ argmina2∈BR2(a1,θ1) u1(a1, a2,θ1).

Define the punishment strategy as

bR
2 (a1,θ) =






a2, if u1(a1, a2,θ) increasing in a2 and θ ≺θ θ
n

bn
2 (a1), if u1(a1, a2,θ) increasing in a2 and θ = θn

a2, if u1(a1, a2,θ) decreasing in a2 and θ ≻ θ1

b1
2(a1), if u1(a1, a2,θ) decreasing in a2 and θ = θ1

(18)

The best payoff that player 1 can achieve against this strategy is U R
1 = maxa1 U1(a1,bR

2 ). We can then

apply Corollary 2 to games with externalities.

Corollary 3. An outcome (a∗
1 , a∗

2 ) of an original game with externalities can be supported with un-

observable and renegotiation-proof contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2)

U1(a∗
1 , a∗

2 ) ≥U R
1 .

Therefore, the effect of renegotiation in this environment is very clear. If the contracts are un-

observable and non-renegotiable, then any outcome (a1, a2) in which player 2 best responds on the

equilibrium path and punishes player 1 in the harshest possible way off-the-equilibrium can be sup-

ported. With unobservable and renegotiation-proof contracts player 2 cannot punish player 1 in the

harshest possible way anymore: the highest (or the lowest) type must play a best response even off-

the-equilibrium path.

We next apply these results to a game that has been a canonical example for issues related to

commitment: Stackelberg and entry-deterrence games. This example will also give us an opportunity

to discuss the implications of observable contracts.

20See Lemma 3 in Section 8, which shows that renegotiation-proofness of a strategy b2 ∈ A
A1×Θ

2 implies that the highest
(lowest, resp.) type does not have a profitable deviation to a higher (lower, resp.) action.
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EXAMPLE: QUANTITY COMPETITION AND ENTRY-DETERRENCE

Consider a Stackelberg game in which firm 1 moves first by choosing an output level q1 ∈Q1 and

firm 2, after observing q1, chooses its own output level q2 ∈Q2. Inverse demand function is given by

P(q1, q2) = max{0,α−q1−q2}, where α> 0, and we assume Qi a rich enough finite subset of R+ whose

largest element is α.21 Cost function of firm 1 is C1(q1) = cq1, where c is common knowledge, whereas

the cost function of firm 2 is C2(q2) = θq2. We assume that θ ∈ {θ1,θ2, . . . ,θn }, where n ≥ 2, is private

information of firm 2 and θ1 < θ2 < ·· · < θn . Firm 1 believes that the probability of θi is given by p(θi )

and for ease of exposition we assume that expected value of θ is equal to c . The profit function of firm

i is given by πi (q1, q2,θ) =P(q1, q2)qi −Ci (qi ) and we assume that both firms are profit maximizers.

To ensure positive output levels in equilibrium we assume that α > 2θn − c , in which case the

(Stackelberg) equilibrium outcome of this game is given by

(
q s

1, q s
2(θ)

)
=

(
α−c

2
,
α−2θ+c

4

)

Define the game G as follows: Let A1 = Q1 and A2 = {−q2 : q2 ∈ Q2} and define %i on Ai as ai %i

a′
i
⇔ ai ≥ a′

i
and %θ as θ%θ θ

′ ⇔ θ ≥ θ′. Let the payoff function of player i be given by ui (a1, a2,θ) =

πi (a1,−a2,θ), for any (a1, a2) ∈ A1×A2. The game G is strategically equivalent to the Stackelberg game

defined in the previous paragraph. It is also easy to show that u2 has strictly increasing differences in

(a2,θ) and u1 is increasing in a2.

Let us first assume that contracts are unobservable. Since u2 has strictly increasing differences

and u1 is increasing in a2, we can apply Corollary 1 and Corollary 2 to characterize all the outcomes

that can be supported with non-renegotiable as well as renegotiation-proof third-party contracts. In

order to apply Corollary 1, we need to calculate the individually rational payoff of player 1, i.e., U+
1 as

defined in equation (17). The harshest punishment firm 2 can inflict is to drive the price down to zero

by producing α for any type θ. Since this is a constant (and hence an increasing) strategy, it follows

that U 1 = 0. In other words, any outcome (a∗
1 , a∗

2 (θ)) such that firm 2 best responds to a∗
1 and firm 1

gets at least zero profit can be supported with non-renegotiable contracts. In particular, entry can be

deterred with non-renegotiable contracts.

Can entry be deterred with renegotiation-proof contracts? In order to apply Corollary 2, we need

to first calculate player 1’s individually rational payoff given that player 2 plays a renegotiation-proof

strategy. The discussion above implies that the harshest punishment is obtained when the highest

type of player 2 best responds while the other types choose the lowest a2, i.e., a2 =−α. Player 1’s ex-

pected payoff when player 2 plays this strategy is given by 1
2 p(θn)(α+θn −a1) a1−ca1. Its maximum,

i.e., player 1’s individually rational payoff, is therefore equal to

U R
1 =





0, p(θn)(α+θn )−2c ≤ 0

(p(θn )(α+θn )−2c)2

8p(θn ) , p(θn)(α+θn )−2c > 0

Condition (1) of Corollary 2 requires that a∗
2 (θ) =

a∗
1 +θ−α

2 for all θ, and hence U1(a∗
1 , a∗

2 ) = 1
2 (α− c −

a∗
1 )a∗

1 . Therefore, by condition (2), any outcome such that 1
2 (α−c −a∗

1 )a∗
1 ≥U R

1 can be supported.

Also note that if p(θn)(α+θn )−2c > 0, then U R
1 is strictly positive. This implies that entry cannot

be deterred if p(θn)(α+θn )−2c > 0. Therefore, we have the following result:

21We introduce this assumption so that player 2 can choose a high enough output level to drive the price to zero.
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Corollary 4. Entry can be deterred with unobservable and non-renegotiable contracts. It can be de-

terred with unobservable and renegotiation-proof contracts if and only if p(θn)(α+θn )−2c ≤ 0.

Now let us assume that contracts are observable. The best payoff that player 2 can obtain in

the original game is the monopoly outcome, i.e., a∗
1 = 0 and a∗

2 (θ) =
a∗

1 +θ−α

2 . If contracts are non-

renegotiable, then Player 2 can obtain this outcome exactly the same way as with unobservable con-

tracts: If player 1 plays any a1 > 0, punish him by flooding the market, i.e., choose a2 =−α. In other

words, with observable and non-renegotiable contracts the unique outcome is the monopoly (entry-

deterrence) outcome.

Could player 2 achieve the monopoly outcome with renegotiation-proof contracts? The above

analysis implies that the answer is yes as long as U R
1 = 0, i.e., p(θn)(α+ θn )− 2c ≤ 0. It is easy to

see that if this condition holds, then the unique equilibrium outcome that can be achieved with ob-

servable and renegotiation-proof contracts is the monopoly outcome. If, on the other hand, p(θn)(α+

θn)−2c > 0, then monopoly outcome can no longer be supported with renegotiation-proof contracts.

However, player 2 can obtain the following outcome: Player 1 plays a∗
1 , where a∗

1 is the smallest a1

such that

1

2
(α−c −a∗

1 )a∗
1 ≥

(
p(θn)(α+θn )−2c

)2

8p(θn )

and player 2 plays a∗
2 (θ) =

a∗
1 +θ−α

2 for all θ. In this outcome, player 1 produces the smallest amount

consistent with player 2 punishing with the harshest possible renegotiation-proof strategy off-the-

equilibrium and best responding on the equilibrium path.

Dewatripont (1988) has also analyzed a similar entry game and showed that entry can be deterred

with renegotiation-proof contracts under certain conditions. His conditions are different from ours

because he uses a different renegotiation-proofness concept, namely durability, first introduced by

Holmstrom and Myerson (1983). A decision rule is durable if and only if the parties involved would

never unanimously approve a change from this decision rule to any other decision rule. Holmstrom

and Myerson also show that this is equivalent to interim incentive efficiency when there is only one

player with private information. In our context, only player 2 has private information and hence a

contract-strategy pair ( f ,b∗
2 ) is interim incentive efficient (and therefore durable) if and only if there

is no a1 ∈ A1 and an incentive compatible (g ,b2) such that after a1 every type of player 2 and the

third-party do better under (g ,b2), with at least one doing strictly better.

We have a characterization of durable strategies for the two-type case, i.e., when Θ= {θ1,θ2}, and

even in that case, the relationship between our concept of renegotiation-proofness and durability

turns out to be quite subtle. It is not difficult to show that neither concept implies the other one in

general. However, in games with externalities it can be shown that durability implies renegotiation-

proofness. The entry-deterrence game is a game with externalities, and therefore, if entry can be

deterred with durable contracts, it can also be deterred with renegotiation-proof contracts. In fact, in

the entry-deterrence game player 2’s payoff function is single-peaked and for such environments we

have a complete characterization of durable outcomes that is particularly easy to apply. Using this

characterization, we can show that the relationship between durability and renegotiation-proofness

is strict.

Proposition 11. In the entry-deterrence game with two types, if p1(θ2 +α) > (θ2 −θ1), then entry can
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be deterred with renegotiation-proof contracts but not with durable contracts.

Proof. Omitted.

Remember that the harshest renegotiation-proof punishment strategy of the incumbent is to

flood the market if entry occurs, except for the highest type (type θ2), who has to best respond. Dura-

bility still requires that the highest type best responds. The difference is that flooding the market for

type θ1 is not a durable strategy: There is a restriction on how much the incumbent can produce in

response to entry, which is condition (d) of Proposition 1 in Dewatripont (1988).

7 Conclusion

In this paper we characterized incentive compatible and renegotiation-proof third-party contracts

and strategies in extensive form games with incomplete information. We applied our results to two-

stage games and showed that when the contracts are observable to the first mover, then the second

mover obtains her Stackelberg payoff that can be achieved with renegotiation-proof strategies. When

the contracts are not observable, then some kind of a “folk theorem” is true: Any outcome in which

the second mover best responds to the first mover’s action and the first mover obtains his individu-

ally rational payoff can be supported. In the definition of the individually rational payoff, player 2 is

restricted to using increasing and renegotiation-proof strategies. The restriction imposed by renego-

tiation-proofness is particularly transparent in games with externalities, i.e., games in which the first

mover’s payoff is monotonically increasing (or decreasing) in the second mover’s action. In this class

of games player 2 can induce player 1 to play player 2’s favorite action by punishing him if he plays

some other action. If player 1’s payoff is increasing in player 2’s action, then the worst punishment is

to play the lowest possible action for every type of player 2. However, this is not a renegotiation-proof

strategy. The worst renegotiation-proof punishment is to best respond for the highest type while the

others play the smallest action.

Overall, we conclude that even with renegotiation-proof contracts, one can support outcomes

that are not perfect Bayesian equilibrium outcomes of the original game, and this may benefit the

second mover in many games, such as the entry game.

8 Proofs

In the game with non-renegotiable contracts, player 2 has an information set at the beginning of the

game, which we identify with the null history ;, and an information set for each ( f ,θ, a1) ∈C ×Θ×A1,

where C =RA1×A2 . Player 3 has an information set for each f ∈C . If contracts are unobservable, then

player 1 has only one information set, given by C . If contracts are observable, then player 1 has

an information set for each f ∈ C . In the game with renegotiable contracts, player 2 has additional

information sets corresponding to each history ( f ,θ, a1, g , y) and ( f ,θ, a1, g ,n) and player 3 has an

additional information set of each ( f , a1, g ), which we denote by I3( f , a1, g ).

We first introduce some notation. Let the number of elements in Θ be equal to n and order its

elements so that θn %θ θn−1 %θ · · ·θ2 %θ θ1. Let ei be the i th standard basis row vector for Rn and

define the row vector di = ei − ei+1, i = 1,2, . . . ,n − 1. Let D be the 2(n − 1) ×n matrix whose row

2i −1 is di and row 2i is −di , i = 1, . . . ,n −1. For any a1 ∈ A1 and b2 ∈ A
A1×Θ

2 define ~U2(a1,b2) as a
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column vector with 2(n −1) components, where component 2i −1 is given by u2(a1,b2(a1,θi ),θi )−

u2(a1,b2(a1,θi+1),θi ) and component 2i is given by u2(a1,b2(a1,θi+1),θi+1)−u2(a1,b2(a1,θi ),θi+1),

i = 1,2, . . . ,n −1.

Notation 1. Given two vectors x, y ∈ Rn

1. x ≥ y if and only if xi ≥ yi , for all i = 1,2, . . . ,n;

2. x > y if and only if xi ≥ yi , for all i = 1,2, . . . ,n and x 6= y ;

3. x ≫ y if and only if xi > yi , for all i = 1,2, . . . ,n.

Similarly for ≤, <, and ≪.

For any a1 ∈ A1, b2 ∈ A
A1×Θ

2 and f ∈ C , let f (a1,b2) be the column vector with n components,

where i th component is given by f (a1,b2(a1,θi )), i = 1,2, . . . ,n. For any strategy profile (b1,b2) of G

define the expected transfer from player 2 to the third-party as F (b1,b2) =
∑

θ∈Θ p(θ) f (b1,b2(b1,θ)).

Proof of Proposition 5. Let b∗
2 ∈ argmaxb2∈B+

2
maxb1∈BR1(b2)U2(b1,b2) and b∗

1 ∈ argmaxb1∈BR1(b∗
2 ) U2(b1,b∗

2 ).

Note that Ū B
2 = U2(b∗

1 ,b∗
2 ). Since b∗

2 is increasing by construction, there exists a contract f ∗ such

that ( f ∗,b∗
2 ) is incentive compatible and F (b∗

1 ,b∗
2 ) = δ. For any f ∈ C , a1 ∈ A1,θ ∈ Θ choose b2, f ∈

argmaxa2∈A2
u2(a1, a2,θ)− f (a1, a2) and b1, f ∈ argmaxa ′

1∈A1
U1(a′

1,b2, f ).

Consider the following assessment (β,µ) ofΓ(G): β2(;) = f ∗, β3( f ∗) = y ,β3( f ) = y iff F (b1, f ,b2, f ) ≥

δ, β1( f ∗) = b∗
1 , β1( f ) = b1, f , for f 6= f ∗, β2( f ∗,θ, a1) = b∗

2 (a1,θ), β2( f ,θ, a1) = b2, f (a1,θ) for all f 6= f ∗,

a1 ∈ A1, and θ ∈Θ.

If player 2 offers any contract f 6= f ∗, the continuation play will be (b1, f ,b2, f ). If F (b1, f ,b2, f ) < δ

it will be rejected and hence it cannot be a profitable deviation. If F (b1, f ,b2, f ) ≥ δ, then

U2(b∗
1 ,b∗

2 )−F (b∗
1 ,b∗

2 ) =U2(b∗
1 ,b∗

2 )−δ≥U2(b1, f ,b2, f )−F (b1, f ,b2, f )

by construction. Therefore, it is optimal for player 2 to offer f ∗. Sequential rationality at other infor-

mation sets are easily checked and we conclude that this assessment is a perfect Bayesian equilibrium

of the game with observable contracts.

Proof Proposition 6. Let b∗
1 (b2) ∈ argminb1∈BR1(b2)U2(b1,b2), b∗

2 ∈ argmaxb2∈B+
2

U2(b∗
1 (b2),b2), and a∗

1 =

b∗
1 (b∗

2 ). Note that U2(a∗
1 ,b∗

1 ) = Ū W
2 and suppose, for contradiction, that player 2 gets a payoff Ũ2 <

Ū W
2 −δ. We will show that player 2 can offer a contract that supports (a∗

1 ,b∗
2 ) and yields a higher

payoff.

For any a1 choose b̂2,a1 ∈ argminb2∈B+
2

U1(a1,b2). By construction b̂2,a1 is increasing and hence

there exists a contract that makes it optimal to play. We will further show that there exists a contract

that makes it the unique optimal strategy after a1. Assume without loss of generality that b̂2,a1(a1,θ) 6=

b̂2,a1(a1,θ′) whenever θ 6= θ′ and hence b̂2,a1 (a1,θi ) ≻θ b̂2,a1 (a1,θi−1) for all i = 1, . . . ,n.22 Define

~U2(a1, b̂2,a1 ) as usual and note that strictly increasing differences and b̂2,a1 (a1,θi ) ≻θ b̂2,a1 (a1,θi−1)

imply that

~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i > 0, ∀i = 1, . . . ,n −1.

22If there exist i such that b̂2,a1 (a1,θi ) = b̂2,a1 (a1,θi−1) simply eliminate the incentive compatibility constraint between
them and set f̂a1 (a1, b̂2,a1 (a1,θi )) = f̂a1 (a1, b̂2,a1 (a1,θi−1)).
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We will show that there exists f a1 such that D f a1 ≪ ~U2(a1, b̂2,a1). Define

A =

(
~U2(a1, b̂2) −D

1 0

)

and note that there exists f a1 such that D f a1 ≪ ~U2(a1, b̂2,a1 ) iff there exists x such that Ax ≫ 0.23

By Gordan’s Theorem, this is true iff A′y = 0 implies y ≤ 0. It is easy to show that A′y = 0 implies

y1 = y2, y3 = y4, · · · , y2(n−1)−1 = y2(n−1). Therefore,

A′y = y2(n−1)+1 +

n−1∑

i=1

(~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i )y2i−1

~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i > 0,∀i = 1, . . . ,n −1, and A′y = 0 imply y ≤ 0.

Let ε> 0 be small and define f (b∗
1 , a2) = δ+ε for all a2. For any a1 6= b∗

1 define

f (a1, a2) =





f

a1

i
, a2 = b̂2,a1 (a1,θi )

∞, otherwise

Under this contract, player 2 plays a best response to a∗
1 and according to b̂2,a1 after any a1 6= a∗

1 .

Player 1, on the other hand, must play a best response to b∗
2 . This is because for any a1 ∉ BR1(b∗

1 ),

we have U1(br1(b∗
2 ),b∗

2 ) >U1(a1,b∗
2 ) ≥ U1(a1, b̂2,a1). Therefore, deviation to such a contract yields a

payoff of U2(b∗
1 ,b∗

2 )−δ−ε> Ũ2, for small enough ε. In other words, player 2 has a profitable deviation,

contradicting that Ũ2 is an equilibrium payoff.

Proof of Lemma 1. Fix a a perfect Bayesian equilibrium with conservative beliefs and suppose that

contract f is renegotiated after some a1 and θ. Let the set of types after which f is renegotiated be

Θ
R and Θ

NR = Θ \ΘR . For any θ ∈ Θ
R , let gθ be the new contract and bgθ

(a1,θ) be the new strategy

of player 2 after a1 and θ. Also let b f (a1,θ) be the equilibrium strategy of player 2 after a1 and θ if

he does not renegotiate f . In other words, we have β2( f ,θ, a1) = b f (a1,θ), ∀θ ∈ Θ
NR ,β2( f ,θ, a1) =

gθ, ∀θ ∈ Θ
R , β2( f ,θ, a1, gθ, y) = bgθ

(a1,θ), β2( f ,θ, a1, gθ,n) = b f (a1,θ), and β3(I3( f , a1, gθ)) = y . For

ease of exposition we will omit the reference to a1 in the following. Consider the following mixture

menu:

{(gθ(bgθ
(θ)),bgθ

(θ))θ∈ΘR }∪ {( f (b f (θ)),b f (θ))θ∈ΘNR }

It is clear that this menu replicates the outcome induced by f after a1. We also claim that this menu

is incentive compatible and renegotiation proof after a1.

Incentive compatibility of ( f ,b f ) implies that no two types in Θ
NR has an incentive to mimic each

other. Consider θ,θ′ ∈Θ
R and suppose, for contradiction, that

u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) < u2(bgθ′
(θ′),θ)− gθ′ (bgθ′

(θ′))

But then type θ could increase her payoff after ( f , a1) by offering gθ′ and playing bgθ′
(θ′) rather than

23To see this let x =

(
ζ

f a1

)
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offering gθ and playing bgθ
(θ).24

Now let θ′ ∈Θ
NR and θ ∈Θ

R , and suppose for contradiction that

u2(b f (θ′),θ′)− f (b f (θ′)) < u2(bgθ
(θ),θ′)− gθ(bgθ

(θ))

This implies that after ( f , a1) offering gθ, which is accepted in equilibrium, and playing bgθ
(θ) is a

profitable deviation for type θ′.

Finally, let θ′ ∈Θ
NR and θ ∈Θ

R and suppose, for contradiction, that

u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) <u2(b f (θ′),θ)− f (b f (θ′))

But then type θ could play b f (θ′) after ( f , a1) and receive a higher payoff rather than offering gθ, which

is accepted, and playing bgθ
(θ). This proves that the mixture menu is incentive compatible.

Suppose now, for contradiction, that the mixture menu is not renegotiation-proof after a1. Then,

there exists θ and an incentive compatible contract strategy pair (h,bh) such that if θ ∈Θ
NR , then,

u2(bh(θ),θ)−h(bh (θ)) >u2(b f (θ),θ)− f (b f (θ)) (19)

if θ ∈Θ
R , then

u2(bh(θ),θ)−h(bh (θ)) > u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) (20)

and

h(bh(θ̂)) > f (b f (θ̂)),∀θ̂ ∈Θ
NR (21)

h(bh(θ̂)) > gθ̂(bg θ̂
(θ̂)),∀θ̂ ∈Θ

R (22)

Since gθ̂ is accepted for all θ̂ ∈Θ
R and the equilibrium has conservative beliefs,

gθ̂(bg θ̂
(θ̂)) ≥ f (b f (θ̂)), ∀θ̂ ∈Θ

R (23)

which, together with (21) and (22), implies that

h(bh(θ̂)) > f (b f (θ̂)),∀θ̂ ∈Θ (24)

Suppose first that θ ∈Θ
NR . Inequalities (19) and (24) imply that after ( f , a1) type θ could offer h, which

would be accepted, and increase her payoff, a contradiction that in equilibrium she plays b f (θ) after

( f , a1).

Similarly, if θ ∈ Θ
R , then (20) and (24) imply that after ( f , a1) type θ could offer h, which would

be accepted, and increase her payoff, rather than offering gθ , a contradiction. Therefore, the mixture

menu is renegotiation-proof.

Since the mixture is incentive compatible we can easily extend it to a contract whose domain is

24Note that gθ′ is accepted after ( f , a1) in equilibrium by assumption.
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the entire A2 rather than just the range of b f and bgθ
. Define the new contract as

h(a2) =






f (a2), ∃θ : a2 = b f (θ)

gθ(a2), ∃θ : a2 = bgθ
(θ)

∞, otherwise

and note that h is well-defined since incentive compatibility of the mixture menu implies that when-

ever b f (θ′) = bgθ
(θ) = a2 for some θ ∈Θ

R and θ′ ∈Θ
NR we must also have f (a2) = gθ(a2).

Proof of Proposition 7. Let b∗
2 ∈ argmaxb2∈B R

2
maxb1∈BR1(b2)U2(b1,b2) and b∗

1 = argmaxb1∈BR1(b∗
2 )U2(b1,b∗

2 ).

Note that Ū BR
2 =U2(b∗

1 ,b∗
2 ). Since b∗

2 is increasing and renegotiation-proof, there exists f ∗ ∈ C such

that ( f ∗,b∗
2 ) is incentive compatible and renegotiation-proof with F∗(b∗

1 ,b∗
2 ) = δ. For any f ∈C , a1,

and θ, let b2, f (a1,θ) ∈ argmaxa2
u2(a1, a2,θ)− f (a1, a2) and g( f ,θ,a1) ∈ argmaxg u2(a1,b2,g (a1,θ),θ)−

g (a1,b2,g (a1,θ)) subject to g (a1,b2,g (a1,θ′)) ≥ f (a1,b2, f (a1,θ′)) for all θ′.

Consider the following assessment (β,µ): β2(;) = f ∗; β1( f ∗) = b∗
1 , β3( f ∗) = y , β2( f ∗,θ, a1) =

b∗
2 (a1,θ) for all (a1,θ);

β2( f ,θ, a1)=






g( f ,θ,a1), if
u2(a1,b2,g( f ,θ,a1 ) (a1,θ),θ)− g( f ,θ,a1 )(a1,b2,g( f ,θ,a1 ) (a1,θ))

> u2(a1,b2, f (a1,θ),θ)− f (a1,b2, f (a1,θ))

b2, f (a1,θ), otherwise

for any f 6= f ∗ and (θ, a1); β2( f ,θ, a1, g , y) = b2,g (a1,θ) and β2( f ,θ, a1, g ,n) = b2, f (a1,θ) for all f 6= f ∗

and (a1,θ, g ); β2( f ∗,θ, a1, g ,n)= b∗
2 (a1,θ) for all (a1,θ, g );

β3(I3( f ∗, a1, g )) =





y, g (a1,b2,g (a1,θ)) > f ∗(a1,b∗

2 (a1,θ)) ∀θ

n, otherwise

and

β3(I3( f , a1, g )) =





y, if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) ∀θ

n, otherwise

for any a1, g and f 6= f ∗. Obviously, any f 6= f ∗ induces a continuation strategy b
f
2 for player 2, which

may involve renegotiation after some θ. Let player 1 play the same best response to the continu-

ation play irrespective of the contract that induces it. Let the third-party accept f iff continuation

play yields expected transfers at least equal to δ. Specify beliefs as follows: µ(I3( f ∗, a1, g ))(θ) = p(θ)

if g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ)) for all θ and µ(I3( f ∗, a1, g ))(θ′) = 1 if there exists θ′ such that

f ∗(a1,b∗
2 (a1,θ′)) ≥ g (a1,b2,g (a1,θ′)); For any f 6= f ∗ and (a1, g ), µ(I3( f , a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) ≥

f (a1,b2, f (a1,θ)) for all θ and µ∗(I3( f , a1, g ))(θ′) = 1 if there exists θ′ such that f (a1,b2, f (a1,θ′)) >

g (a1,b2,g (a1,θ′)).

Now consider any contract f 6= f ∗. If ( f ,b2, f ) is renegotiation-proof, then b2, f ∈ B R
2 and hence f

cannot yield a higher payoff than f ∗. Therefore, suppose that ( f ,b2, f ) is not renegotiation-proof and

let b
f
2 be the induced strategy, which includes renegotiation after some a1 and θ. Sinceβ3(I3( f , a1, g )) =

y iff g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) for all θ ∈ Θ, the equilibrium constructed above has conser-

vative beliefs. Lemma 1 therefore implies that there exists (h,b2,h) which is incentive compatible and
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renegotiation-proof and induces the same outcome as ( f ,b
f
2 ). But no renegotiation-proof strategy

can yield a payoff that is higher than Ū BR
2 and hence deviation to f cannot be profitable.

Sequential rationality at other information sets and consistency of beliefs can be checked easily

to show that the above assessment is a perfect Bayesian equilibrium.

Proof. (Proof of Proposition 9) (Only if ) Suppose that (b∗
1 ,b∗

2 ) can be supported. Then, there exists a

perfect Bayesian equilibrium (β∗,µ∗) that induces (b∗
1 ,b∗

2 ), i.e., β∗
2 (;) = f ∗, β3( f ∗) = y , β∗

1 (C ) = b∗
1 ,

β∗
2 ( f ∗,θ, a1) = b∗

2 (a1,θ) for all a1 ∈ A1 and θ ∈Θ. The fact that (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium

of G is a direct consequence of sequential rationality of players 1 and 2. It must also be the case that

it is optimal to play according to b∗
2 under f ∗. Increasing differences and Proposition 1 implies that

b∗
2 is increasing.

[If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increasing. Proposition 1 implies

that there exists a contract f ′ such that ( f ′,b∗
2 ) is incentive compatible. It is not difficult to show that

we can find such a contract whose expected value under (b∗
1 ,b∗

2 ) is equal to δ. So assume F ′(b∗
1 ,b∗

2 ) =

δ. For any b2 ∈ A
A1×Θ

2 and a1 ∈ A1, let b2(a1,Θ) be the image of Θ under b2(a1, .). Define

f ∗(a1, a2) =





f ′(a1, a2), if a2 ∈ b∗

2 (a1,Θ)

∞, otherwise

for any (a1, a2) ∈ A1 × A2, and

b∗
2, f (a1,θ) =





b∗

2 (a1,θ), f = f ∗

∈ argmaxa2
u2(a1, a2,θ)− f (a1, a2), f 6= f ∗

for any f ∈ C , a1 ∈ A1, and θ ∈ Θ. Consider the assessment (β∗,µ∗) of Γ(G), where β∗
2 [;] = f ∗,

β3[ f ] = y iff F (b∗
1 ,b∗

2, f
) ≥ δ, β∗

1 [C ] = b∗
1 , β∗

2 [ f ,θ, a1] = b∗
2, f

(a1,θ) for all f ∈ C , a1 ∈ A1, and θ ∈ Θ,

and µ∗[C ]( f ∗) = 1. It is easy to check that this assessment induces (b∗
1 ,b∗

2 ) and is a perfect Bayesian

equilibrium of Γ(G).

Proof of Proposition 10. [If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increas-

ing and renegotiation-proof. This implies that there exists f ′ ∈C such that ( f ′,b∗
2 ) is incentive com-

patible and renegotiation-proof. Let f ∗(a1, a2) = f ′(a1, a2)− F ′(b∗
1 ,b∗

2 )+δ for all (a1, a2) and note

that F∗(b∗
1 ,b∗

2 ) = δ. Furthermore, using Theorem 1, it can be easily checked that ( f ∗,b∗
2 ) is incentive

compatible and renegotiation-proof. For any f ∈C , a1, and θ, let b2, f (a1,θ) ∈ argmaxa2
u2(a1, a2,θ)−

f (a1, a2) and g( f ,θ,a1) ∈ argmaxg u2(a1,b2,g (a1,θ),θ)− g (a1,b2,g (a1,θ)) subject to g (a1,b2,g (a1,θ′)) ≥

f (a1,b2, f (a1,θ′)) for all θ′.

Consider the following assessment (β∗,µ∗) of ΓR (G): β∗
2 (;) = f ∗; β3( f ) = y iff continuation play

yields an expected transfer of at least δ, β∗
1 (C )= b∗

1 , β∗
2 ( f ∗,θ, a1) = b∗

2 (a1,θ) for all (a1,θ);

β∗
2 ( f ,θ, a1) =






g( f ,θ,a1), if
u2(a1,b2,g( f ,θ,a1 ) (a1,θ),θ)− g( f ,θ,a1)(a1,b2,g( f ,θ,a1) (a1,θ))

> u2(a1,b2, f (a1,θ),θ)− f (a1,b2, f (a1,θ))

b2, f (a1,θ), otherwise

for any f 6= f ∗ and (θ, a1); β∗
2 ( f ,θ, a1, g , y) = b2,g (a1,θ) and β2( f ,θ, a1, g ,n) = b2, f (a1,θ) for all f 6= f ∗
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and (a1,θ, g ); β2( f ∗,θ, a1, g ,n)= b∗
2 (a1,θ) for all (a1,θ, g );

β∗
3 (I3( f ∗, a1, g )) =





y, g (a1,b2,g (a1,θ)) > f ∗(a1,b∗

2 (a1,θ)) ∀θ

n, otherwise

and

β∗
3 (I3( f , a1, g )) =





y, if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) ∀θ

n, otherwise

for any a1, g and f 6= f ∗; µ∗(C )( f ∗) = 1; µ∗(I3( f ∗, a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ))

for all θ and µ∗(I3( f ∗, a1, g ))(θ′) = 1 if there exists θ′ such that f ∗(a1,b∗
2 (a1,θ′)) ≥ g (a1,b2,g (a1,θ′));

For any f 6= f ∗ and (a1, g ), µ∗(I3( f , a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) for all θ and

µ∗(I3( f , a1, g ))(θ′) = 1 if there exists θ′ such that f (a1,b2, f (a1,θ′)) > g (a1,b2,g (a1,θ′)). This assess-

ment induces (b∗
1 ,b∗

2 ) and is a renegotiation-proof perfect Bayesian equilibrium.

[Only if] Suppose that ΓR (G) has a renegotiation-proof perfect Bayesian equilibrium (β∗,µ∗) that

induces (b∗
1 ,b∗

2 ). Letting β∗
2 (;) = f ∗, we have β∗

1 (C ) = b∗
1 , β2( f ∗,θ, a1) = b∗

2 (a1,θ) for all (a1,θ), and

µ∗(C )( f ∗) = 1. Sequential rationality of player 1 implies that

b∗
1 ∈ argmax

a1

U1(a1,b∗
2 ) (25)

whereas that of player 2 implies u2(a1,b∗
2 (a1,θ),θ)− f ∗(a1,b∗

2 (a1,θ)) ≥ u2(a1,b∗
2 (a1,θ′),θ)− f ∗(a1,b∗

2 (a1,θ′))

for all a1 and θ,θ′, which, together with increasing differences, implies that b∗
2 is increasing.

We also claim that

b∗
2 (b∗

1 ,θ) ∈ argmax
a2

u2(b∗
1 , a2,θ) ∀θ. (26)

Suppose, for contradiction, that this is not the case for θ′ and let â2 ∈ argmaxa2
u2(b∗

1 , a2,θ′) and define

ε= u2(b∗
1 , â2,θ′)−u2(b∗

1 ,b∗
2 (b∗

1 ,θ′),θ′) > 0. Define f ′(a1, a2) = F∗(b∗
1 ,b∗

2 )+ε/2 and note that the third-

party accepts f ′. Assume first that f ′ is not renegotiated after b∗
1 and note that sequential rationality

of player 2 implies that β∗
2 ( f ′,θ,b∗

1 ) ∈ argmaxa2
u2(b∗

1 , a2,θ). Let b2, f ′(a1,θ) = β∗
2 ( f ′,θ, a1). Player 2’s

expected payoff under f ′ is

U2(b∗
1 ,b2, f ′)−F∗(b∗

1 ,b∗
2 )−ε/2 >U2(b∗

1 ,b∗
2 )−F∗(b∗

1 ,b∗
2 )

contradicting that (β∗,µ∗) is a PBE. A similar argument goes through if f ′ is renegotiated after b∗
1 .

Therefore, by (25) and (26), (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is increasing. Fi-

nally, suppose that b∗
2 is not renegotiation-proof. This implies that for any contract f such that ( f ,b∗

2 )

is incentive compatible, there exist a′
1, θ′, and an incentive compatible (g ,b2) such that u2(a′

1,b2(a′
1,θ′),θ′)−

g (a′
1,b2(a′

1,θ′)) > u2(a′
1,b∗

2 (a′
1,θ′),θ′)− f (a′

1,b∗
2 (a′

1,θ′)) and g (a′
1,b2(a′

1,θ)) > f (a′
1,b∗

2 (a′
1,θ)) for all θ.

This implies that, in any perfect Bayesian equilibrium, after history ( f ,θ′, a′
1) player 2 strictly prefers

to renegotiate and offer g and the third-party accepts it. In other words, there exists no renegotiation-

proof perfect Bayesian equilibrium which induces (b∗
1 ,b∗

2 ), completing the proof.

Proof of Corollary 3. Given Corollary 2, we only need to prove that U R
1 = maxa1 U1(a1,bR

2 ). We first

need the following definition
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Definition 11. For any b2 ∈ A
A1×Θ

2 we say that (a1, i ), i ∈ {1,2, . . . ,n} has right deviation (left devia-

tion) at b2 if there exists an a2 ∈ A2 such that a2 %2 b2(a1,θi ) (b2(a1,θi ) %2 a2) and u2(a1, a2,θi ) >

u2(a1,b2(a1,θi )θi ). Otherwise, we say that i has no right deviation (no left deviation)at b2.

For any b2 ∈ A
A1×Θ

2 and (a1, i ), i ∈ {1, · · ·,n}, that has right deviation at b2, define

R(a1, i ) = {k > i : b2(a1,θk )∈ BR2(a1,θk ) and i < j < k implies that (a1, j ) has no left deviation at b2}

Similarly, for any (a1, i ) with i ∈ {1, · · ·,n}, that has a left deviation at b2, define

L(a1, i ) = {k < i : b2(a1,θk ) ∈ BR2(a1,θk ) and k < j < i implies that (a1, j ) has no right deviation at b2},

We need the following lemma:

Lemma 2. b∗
2 is renegotiation-proof if for any (a1, i1) that has right deviation and any (a1, i2) that has

left deviation at b∗
2 , R(a1, i1) 6= ;, L(a1, i2) 6= ;, and i1 < i2 implies R(a1, i1)∩L(a1, i2) 6= ;.

Proof of Lemma 2. Similar to the proof of Lemma 6 in Gerratana and Koçkesen (2012).

We can now proceed to the proof of Corollary 3. We first prove that bR
2 is renegotiation proof. Fix

a1 and assume u1 is increasing in a2. Then, there is no (a1, i ) with left deviation by construction of bR
2 .

For any (a1, i ) with right deviation, we have n ∈ R(a1, i ). Similarly, if u1 is decreasing in a2. Lemma 2,

therefore, implies that bR
2 is renegotiation-proof.

We next prove that for any a1 and renegotiation-proof strategy b2 ∈ B R
2 , we have U1(a1,b2) ≥

U1(a1,bR
2 ). We will use the following lemma

Lemma 3. If b2 ∈ A
A1×Θ

2 is renegotiation-proof, then (a1,θn) has no right deviation at b2 for any a1 ∈ A1

Proof of Lemma 3. Similar to the proof of Lemma 7 in Gerratana and Koçkesen (2012).

Fix a1 and assume that u1 is increasing in a2. Let b2 ∈ B R
2 . Lemma 3 implies that b2(a1,θn) %2

bn
2 (a1) and hence u1(a1,b2(a1,θn),θn )≥ u1(a1,bn

2 (a1),θn ) =u1(a1,bR
2 (a1,θn),θn). Also, u1(a1,b2(a1,θ),θ) ≥

u1(a1, a2,θ) for all θ, which implies that U1(a1,b2)≥U1(a1,bR
2 ). Therefore, U R

1 =maxa1 U1(a1,bR
2 ).
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