RETHINKING THE EFFECTS OF FINANCIAL GLOBALIZATION*

Fernando Broner† Jaume Ventura‡

This version: October 2015

Abstract

During the last few decades, many emerging markets lifted restrictions on cross-border financial transactions. In this paper, we present a simple model that can account for the observed effects of financial globalization. The model emphasizes the role of imperfect enforcement of domestic debts and the interactions between domestic and foreign debts. Financial globalization can lead to a variety of outcomes: (i) domestic capital flight and ambiguous effects on net capital flows, investment, and growth; (ii) capital inflows and higher investment and growth; or (iii) volatile capital flows and unstable domestic financial markets. The model shows how the effects of financial globalization depend on the level of development, productivity, domestic savings, and the quality of institutions. JEL Codes: F34, F36, F43, G15, O19, O43.

*Previous versions of this paper circulated under the title “Rethinking the Effects of Financial Liberalization.” We thank Francisco Queiros, Jagdish Tripathy, and Robert Zymek for excellent research assistance. We also thank the editor, Elhanan Helpman, three anonymous referees, Fernando Alvarez, Yan Bai, Vasco Carvalho, Michael Devereux, Aitor Erce, Nicola Gennaioli, Giacomo Ponzetto, Romain Ranciere, and participants at various conferences and seminars for their valuable comments. We acknowledge financial support from the International Growth Centre, the Spanish Ministry of Science and Innovation (ECO2008-01666), and the European Research Council (ERC263846-KF&EM).

†CREI, Universitat Pompeu Fabra, and Barcelona GSE. Address: Ramon Trias Fargas, 25-27, 08005-Barcelona. Telephone: (+34) 93 542 2601. E-mail: fbroner@crei.cat

‡CREI, Universitat Pompeu Fabra, and Barcelona GSE. Address: Ramon Trias Fargas, 25-27, 08005-Barcelona. Telephone: (+34) 93 542 1765. E-mail: jventura@crei.cat
I. Introduction

During the last three decades, many countries have lifted restrictions on cross-border financial transactions fueling a new wave of financial globalization. There is a strong and well-justified theoretical presumption that increased trade opportunities should be welfare improving. And yet many observers have noticed that the incidence of domestic financial crises has grown alongside financial globalization.\(^1\) With historical perspective, this is not surprising. Figure I (which is taken from Reinhart and Rogoff’s seminal book on financial crises) shows that this relationship between financial globalization and the incidence of financial crises is also present in earlier periods.

The goal of this paper is to improve our understanding of this relationship and its implications. In particular, we explore the view that the increased instability of domestic financial markets can be partly explained by a change in government behavior resulting from financial globalization. This view is based on three observations. The first one is that the probability of financial crises depends on the nature of financial regulations and the judicial system’s ability and resolve to enforce contracts. Governments can take actions that affect this probability. For instance, they can raise it by insuring deposits or bailing out financial institutions. Or they can lower this probability by suspending bank payments, re-denominating the terms or currency of existing financial contracts, and/or imposing capital controls.

The second observation is that governments cannot fully discriminate between domestic and foreign residents when undertaking these actions. In the case of bonds and stocks, discriminating against foreigners is difficult because they can resell these assets to domestic residents in secondary markets.\(^2\) Even when trade is intermediated by banks and other financial institutions, discrimination is difficult since it is usually not possible to know the nationality of the clients of these intermediaries or how default losses would be distributed among them. Finally, courts often abide by equal-treatment rules that limit the possibility of discrimination based on nationality.

The third observation is that financial globalization changes the mix of creditors, raising the number of foreign holders of domestic debts. Since governments typically care more about the welfare of domestic debtholders, if their share remains high enough governments continue taking actions that result in a low probability of financial crises. If, instead, the share of domestic debtholders drops sufficiently, governments stop taking those actions. As a result, financial globalization

\(^2\)See Broner, Martin, and Ventura (2008 and 2010).
raises the probability of financial crises.

What makes the analysis interesting is that the mix of creditors depends not only on the extent of financial globalization, but also on the probability of financial crises itself. Indeed, the main of contribution of this paper is to develop a framework to study how the interplay between the mix of creditors and the probability of financial crises is affected by financial globalization.\(^3\) Despite its simplicity, this framework turns out to be a rich source of testable hypotheses linking the success or failure of financial globalization to observable country characteristics such as initial income, savings, the level of productivity, the quality of enforcement institutions, and luck. It also suggests simple explanations for a number of observed effects of financial globalization that conventional models have had a hard time explaining.\(^4\)

Perhaps the most noticeable aspect of the recent wave of financial globalization is that, despite the large increase in gross capital flows around the world, net capital flows to emerging markets have often been quite small and sometimes even negative. Conventional models recognize that foreign sources of financing can be risky, as the temptation for opportunistic default combined with low-quality institutions can generate recurrent foreign debt crisis. But they also assume that domestic savings stay at home, and that new foreign sources of financing constitute a net addition to overall development financing. If enforcement institutions cannot discriminate between domestic and foreign debtholders however, foreign debt crisis might bring about domestic debt crises. Anticipating this, domestic savers might find it optimal to send part or all of their savings abroad. This detrimental “capital flight” effect means that financial globalization not only adds new foreign sources of financing that are cheap but risky, but it also subtracts domestic sources of financing that were expensive but safe. This tends to raise gross capital flows but has an ambiguous effect on net capital flows and overall development financing.

Another aspect of financial globalization is that emerging markets receiving substantial net capital flows have been those that are already somewhat rich and have substantial domestic savings. Conventional models predict that these countries should benefit from financial globalization less than poorer countries that have low domestic savings. The reason, of course, is that their needs

\(^3\)In our theory, a financial crisis is a state of generalized default on financial contracts. This represents well many aspects of real-world crises. Examples include instances in which governments were expected to bailout financial institutions but failed to do so ex post (e.g. the East Asian crisis of the late 1990s) and in which governments re-denominated the terms of financial contracts (e.g. the pesification of Argentine bank assets and liabilities in 2001-2002).

\(^4\)For a thorough review of the effects of financial globalization, see the surveys by Prasad, Rajan, and Subramanian (2007), Kose, Prasad, and Terrones (2009), and Obstfeld (2009). In section VII, we describe how our theoretical results relate to the main findings of the empirical literature. The interested reader will find there many additional references.
for foreign financing are less acute. But in our framework, domestic savings might foster capital inflows rather than the opposite. The key observation again is that enforcement institutions might not be able to discriminate between domestic and foreign debtholders. If domestic markets are deep enough, the desire to enforce domestic debts reduces or eliminates the temptation for opportunistic default on foreigners. This beneficial “financial depth” effect lowers the risk of foreign borrowing and raises capital inflows.\footnote{Although in our model the financial depth effect depends literally on domestic savings, more generally what matters is the extent to which those savings are intermediated. This is usually referred to in the literature as financial development. Our theory accounts for rich interactions between financial development and capital flows, which depend especially on whether the capital flight or financial depth effect dominates. Interestingly, Lane and Milesi-Ferretti (2001) find that the relationship between financial development and capital flows is different for industrial and developing countries. In the former, capital inflows are positively related to financial development, while in the latter this is not the case. This suggests that the financial depth effect might be stronger in industrial countries.}

Another aspect of financial globalization is that it has led to capital flows that are volatile and procyclical. The two effects discussed above suggest that two equilibria are possible depending on investor sentiment. If domestic savers are pessimistic and think that the probability of default is high, they prefer to send most of their savings abroad. In this case, default affects mostly foreign debts and countries prefer to default ex post, confirming the pessimistic beliefs. This equilibrium with small or negative capital inflows always exists. If instead domestic savers are optimistic and think that the probability of default is small, they keep their savings at home. In this case, default affects mostly domestic debts and countries prefer not to default ex post, confirming the optimistic beliefs. This equilibrium with substantial capital inflows exists only if domestic savings are high relative to foreign borrowing. We describe these equilibria and show how changes in investor sentiment can generate macroeconomic volatility and procyclical capital flows.

Our theory provides an example of how globalization strains existing institutions. We start from a situation in which, despite imperfect enforcement institutions, domestic debts are enforced and financial crises never occur. After financial globalization, and despite no institutional change, domestic debts might no longer be enforced and the probability of financial crises increases. The basic point is that globalization affects policy incentives, sometimes accentuating the shortcomings of imperfect institutions. This is a main theme of this paper.\footnote{In this regard, this paper can be seen as a contribution to a large literature on the relationship between institutions, financial development, and economic growth. See the surveys of Levine (2005) and Beck and Levine (2005).}

Our paper is another step forward in the development of a modern theory of financial globalization. The underpinnings of this theory were laid out by the maximizing models that took over the field of international economics in the early 1980s. These models were designed to study the
pattern of capital flows and their macroeconomic consequences. They sprang from two sources that made opposite assumptions regarding the costs of international risk sharing. The so-called intertemporal approach (IA) to the current account assumed that these costs are prohibitive. And the open-economy versions of the Real Business Cycle (RBC) model assumed that these costs are negligible. See Obstfeld and Rogoff (1996) for a textbook treatment of these models.

In the case of industrial countries, Kraay and Ventura (2000 and 2002) and Ventura (2003) showed that the IA models perform quite well empirically. Instead, RBC models predict much more international risk sharing than observed in the data. This is why a lot of research in the field has focused on explaining why risk sharing is so low among industrial countries. See the surveys by Lewis (1999), Karolyi and Stultz (2003), and Sercu and Vanpée (2007).

In the case of emerging markets, it was recognized early on that neither the IA nor the RBC models would prove appropriate.\(^7\) Recall that these models were being developed in the 1980s against the background of the worst sovereign debt crisis since the 1930s. Consequently, a new class of models was developed emphasizing the role of strategic default on foreign debts (also called sovereign risk). See the seminal papers by Eaton and Gersovitz (1981), Grossman and Van Huyck (1988), Bulow and Rogoff (1989a and 1989b), and Atkeson (1991), and the surveys by Eaton and Fernández (1995) and Aguiar and Amador (2014).\(^8\) The predictions of these models for financial globalization are largely the same as those of the IA models.\(^9\) Strategic default reduces the size of the effects, but it does not change their nature.\(^10\)

A number of papers have shifted the focus away from macroeconomic or sovereign risk and towards microeconomic frictions in financial markets. In a seminal paper, Gertler and Rogoff (1990) showed that, if wealth plays a role as collateral when borrowing (as it is often the case when various microeconomic frictions are present), autarky interest rates might be lower in capital-scarce countries than in capital-abundant ones, even if the marginal product of capital is higher. This might reverse the predictions of the IA models regarding the pattern of capital flows. Boyd and Smith (1997) and Matsuyama (2004 and 2008) used this insight in related dynamic models to show that financial liberalization can reduce investment and growth in capital-scarce countries. These

\(^7\)See Aguiar and Gopinath (2007) for a recent contrarian view.

\(^9\)An interesting exception is Aguiar and Amador (2011). In their model, sovereign risk interacts with the incentives to expropriate capital so that reductions in public debt are associated with higher private capital inflows, investment, and growth.

\(^10\)It might however explain the composition of capital flows. See Kraay et al. (2005).
models have the ability to explain why capital flows towards countries that are already somewhat rich and have developed financial markets.11,12

Sovereign risk and microeconomic financial frictions are both important features of real economies. Our work here, and also that in Tirole (2003) and Broner and Ventura (2011), build on both traditions and shows how the sovereign’s behavior worsens as a result of globalization, making microeconomic frictions more severe. Two recent papers, Bruttì (2011) and Gennaioli, Martin, and Rossi (2014) have proposed related models in which non-discriminatory defaults on sovereign debt reduce the net worth of investors and thus create turmoil in domestic financial markets.

The rest of the paper is organized in seven sections. Section II develops the basic analytical framework used throughout the paper. Section III solves the model in autarky and shows that enforcement problems do not arise when all debts are domestic. Section IV solves the model after financial globalization. Section V analyzes the model for the particular case in which there is a representative agent and/or enforcement is discriminatory. Section VI analyzes the general case. Section VII describes how our main results relate to the findings of the empirical literature. Section VIII concludes with some remarks on the role of policy.

II. A Simple Model of Credit, Investment, and Growth

Consider a small country inhabited by an infinite sequence of two-period overlapping generations indexed by $t \in (-\infty, \infty)$. All generations contain a continuum of individuals of size one that maximize the utility function

$$U_{t,t}^i = \ln c_{t,t}^i + \beta \cdot E_t \ln c_{t,t+1}^i,$$

(1)

where $\beta > 0$ and $c_{t,t}^i$ and $c_{t,t+1}^i$ are the consumptions of individual i of generation t in periods t and $t+1$.

The output of the country is given by a Cobb-Douglas production function: $f(k_t) = A \cdot k_t^\alpha \cdot l_t^{1-\alpha}$ with $\alpha \in (0,1)$ and $A > 0$, where k_t and l_t are the country’s capital stock and labor force. The

12Another interesting line of research is that followed by Acemoglu and Zilibotti (1997) who develop a model in which investments are indivisible. In their framework, financial globalization reduces investment and growth in capital-scarce countries if the world is poor enough, but this trend reverses as the world grows richer. Martin and Rey (2006) have shown that in this framework changes in investor sentiment can also generate macroeconomic volatility and procyclical capital flows.
young supply one unit of labor inelastically, so that \(l_t = 1 \) for all \(t \). The capital is supplied by the old and fully depreciates during production. A fraction \(\varepsilon \) of members of each generation, the “entrepreneurs”, can produce one unit of capital per unit of output. The rest of the generation, the “savers”, can only produce \(\rho > 0 \) units of capital per unit of output. We focus throughout on the case \(\rho \approx 0 \). Let \(I_t \) be the set of all members of generation \(t \), and \(I^E_t \) and \(I^S_t \) be the subsets of entrepreneurs and savers.

Factor markets are competitive and factors of production are paid their marginal products:

\[
w_t = (1 - \alpha) \cdot A \cdot k^\alpha_t \quad \text{and} \quad r_t = \alpha \cdot A \cdot k^{\alpha - 1}_t,
\]

where \(w_t \) and \(r_t \) are the wage and the rental rate. Equation (2) shows how output is split between the young generation who owns the labor and the old generation who owns the capital stock.

The focus of our analysis is the credit market. In this market, non-contingent debt contracts are traded.\(^\text{13}\) Before financial globalization, only domestic residents participate in this market. Financial globalization allows residents from other, unspecified, countries whose combined size is much larger than that of our country to participate in this market. These “foreigners” are willing to buy or sell debt contracts offering an expected gross return of one. We refer to debt contracts issued and held by domestic residents as domestic debts. We refer to debt contracts issued by domestic residents and held by foreigners as foreign debts. Finally, we refer to debt contracts issued by foreigners and held by domestic residents as foreign assets.

Foreign assets are always enforced. But domestic and foreign debts might not. In particular, we assume that the country’s enforcement institutions are imperfect and succeed only with probability \(\pi \in [0, 1] \). When institutions succeed, all outstanding debts are enforced. When institutions fail, the old generation chooses whether to enforce outstanding debts. The parameter \(\pi \) measures the quality of the country’s institutions.

We do not model explicitly how generations make collective decisions when institutions fail. Instead, we assume that these decisions are consistent with two principles: (i) an increase in the consumption of any member of the generation is desirable, and (ii) a redistribution that reduces consumption inequality within the generation is also desirable. Define \(c_{t,t+1} \) as the average old-age consumption of the members of generation \(t \), i.e. \(c_{t,t+1} = \int_{l \in I_t} c^t_{t+1}. \) Then, we assume that

\(^{13}\)As most of the literature, we do not justify why debt contracts are not contingent. Introducing contingencies would eliminate default, but most of the results in terms of quantities and welfare would survive. See Broner and Ventura (2011) for a model of financial globalization with contingent debt contracts.
generation t chooses enforcement in period $t+1$ to maximize

$$W_{t,t+1} = c_{t,t+1} - \frac{\omega}{2} \cdot \int_{t \in I_t} |c^i_{t,t+1} - c_{t,t+1}|,$$

(3)

where ω is the weight on the second principle. We assume that $\omega \in (0, 1)$ so that an increase in the consumption of any individual is desirable even if this raises inequality.\footnote{We choose this particular welfare function for analytical convenience. All our results would go through with any welfare function satisfying the two principles mentioned. We shall return to this point in a later footnote.}

We introduce two restrictions on enforcement decisions. The first one is that it is not possible to discriminate among debts held by creditors of the same type. Thus, there are three relevant enforcement states, $z_{t+1} \in \{E, D, N\}$. If $z_{t+1} = E$, all debts are enforced. If $z_{t+1} = D$, domestic debts are enforced but foreign debts are not. If $z_{t+1} = N$, neither domestic nor foreign debts are enforced. Let p^E_t, p^D_t, and p^N_t be the probability as of period t that z_{t+1} takes the corresponding value.\footnote{As it will become clear soon, a generation would never choose to enforce foreign debts and not domestic ones. Thus, we disregard this possibility.} The second restriction is that it is sometimes not possible to discriminate between domestic and foreign debts. If generations enforce domestic debts, attempts to default on foreign ones succeed only with probability $\delta \in [0, 1]$. Thus, when institutions fail, generations choose among $z_{t+1} = E$, $z_{t+1} = N$, and a “discrimination lottery” that delivers $z_{t+1} = D$ with probability δ and $z_{t+1} = E$ with probability $1 - \delta$. The parameter δ measures how easy it is to discriminate against foreigners.

We define a competitive equilibrium as a sequence of prices and quantities such that individuals choose their capital and debtholdings so as to maximize their utility in equation (1), generations choose enforcement so as to maximize their welfare in equation (3), factor prices are given by equations (2), and the credit market clears. The goal of the next few sections is to study how financial globalization affects the workings of the credit market and the shape of competitive equilibria.

III. Equilibrium Dynamics Before Financial Globalization

Before financial globalization, only domestic residents participate in the credit market. Thus, enforcement states D and E are identical and there is no loss of generality in assuming that $p^D_t = 0$. Let R_{t+1} be the contractual interest rate on domestic debts, and let d^i_{t+1} and k^i_{t+1} be the domestic debts issued (or held if negative) and the capital stock of individual i. Then, his/her
budget constraints are given by

\[c_{i,t} + qt^{i} \cdot k_{t+1}^{i} \leq w_{t} + \frac{d_{t+1}^{i}}{R_{t+1}}, \]

(4)

\[c_{i,t+1}' = \begin{cases}
 r_{t+1} \cdot k_{t+1}^{i} - d_{t+1}^{i} & \text{if } z_{t+1} = E, \\
 r_{t+1} \cdot k_{t+1}^{i} & \text{if } z_{t+1} = N,
\end{cases} \]

(5)

where \(q^{i} \) is the cost of capital. This cost equals one for all \(i \in I_{t}^{E} \) and \(\rho^{-1} \) for all \(i \in I_{t}^{S} \). Both entrepreneurs and savers receive a wage when young and consume. The only difference is that the cost of capital is higher for savers. As usual, we refer to aggregate variables by omitting the individual superscript. For instance, \(k_{t+1} = \int_{i} k_{t+1}^{i} \).

Savers and entrepreneurs maximize utility in equation (1) subject to the budget constraints in equations (4) and (5). The solution to this problem is

\[c_{i,t}' = \frac{1}{1 + \beta} \cdot w_{t}, \]

(6)

\[c_{i,t+1}' = \begin{cases}
 \frac{\beta \cdot p_{t}^{E}}{1 + \beta} \cdot w_{t} \cdot R_{t+1} & \text{if } z_{t+1} = E, \\
 \frac{\beta \cdot p_{t}^{N}}{1 + \beta} \cdot w_{t} \cdot \frac{1}{q^{i} \cdot r_{t+1} - \frac{1}{R_{t+1}}} & \text{if } z_{t+1} = N.
\end{cases} \]

(7)

To understand equations (6) and (7), note that there are three relevant consumptions for individual \(i \): consumption during youth, consumption during old age if \(z_{t+1} = E \), and consumption during old age if \(z_{t+1} = N \). Given existing assets, it is possible to “purchase” these three consumptions at prices \(\frac{1}{R_{t+1}} \) and \(\frac{1}{q^{i} \cdot r_{t+1} - \frac{1}{R_{t+1}}} \), respectively. Individual \(i \) has income equal to \(w_{t} \) and allocates share \(\frac{1}{1 + \beta} \cdot \frac{\beta \cdot p_{t}^{E}}{1 + \beta} \) and \(\frac{\beta \cdot p_{t}^{N}}{1 + \beta} \) of this income to purchase the respective consumption.

The following proposition describes the equilibrium dynamics of our country in autarky:

Proposition 1. In autarky, there is a unique equilibrium in which \(p_{t}^{E} = 1 \) and \(p_{t}^{D} = p_{t}^{N} = 0 \). The interest rate and the capital stock are

\[R_{t+1} = \alpha \cdot A \cdot k_{t}^{\alpha - 1}, \]

(8)

\[k_{t+1} = s \cdot A \cdot k_{t}^{\alpha}, \]

(9)

where \(s \equiv \frac{\beta}{1 + \beta} \cdot (1 - \alpha) \) is the savings rate of the economy.
Proof: If \(z_{t+1} = E \), old savers and entrepreneurs share the economy’s capital income when old and consume the same. If instead \(z_{t+1} = N \), old entrepreneurs consume the entire capital income and old savers consume nothing (recall that \(\rho \approx 0 \)). Thus, \(z_{t+1} = E \) lowers consumption inequality without affecting its average, and it is therefore preferred ex-post when institutions fail. Thus, \(p_t^E = 1 \) and competition in the credit market implies that \(R_{t+1} = \alpha \cdot \frac{A}{k_t^{\sigma+1}} \). Savers do not invest and lend all their savings to entrepreneurs.

Hence, \(k_{t+1} = \frac{\beta}{1+\beta} \cdot w_t = s \cdot A \cdot k_t^\sigma \). □

Proposition 1 says that there is no enforcement risk in autarky. Savers lend their savings to entrepreneurs, and the latter invest both these and their own savings. Old generations consume the economy’s capital income. Enforcing domestic debts ensures that this capital income is equally shared by entrepreneurs and savers, while defaulting on these debts would allow entrepreneurs to keep all the capital income for themselves. Thus, enforcing debts reduces consumption inequality without affecting average consumption and it is therefore preferred. Despite weak enforcement institutions, the credit market works well. Entrepreneurs compete for the savings of savers until the interest rate equals the return to investment.

Figure II shows the law of motion of the capital stock in autarky. The dynamics of the capital stock are those of the standard neoclassical model. From any initial condition, the economy converges to a steady state with the capital stock

\[
k_{\infty}^A = (s \cdot A)^{\frac{1}{1-\sigma}}.
\]

We assume that \(s < \alpha \) so that the steady state interest rate in autarky is above one, i.e. the country is capital poor and a natural borrower even in the long run. This streamlines the discussion by ruling out a number of straightforward cases.

IV. Equilibrium Dynamics After Financial Globalization

Financial globalization allows foreigners to participate in the credit market. Let \(R_{t+1}^* \) be the contractual interest rate on foreign debts, and let \(d_{t+1}^i \) and \(a_{t+1}^i \) be the foreign debts issued and the foreign assets held by individual \(i \). Naturally, \(d_{t+1}^i \geq 0 \) and \(a_{t+1}^i \geq 0 \). Then, his/her budget constraints after financial globalization become

\[
c^i_{t,t} + q^j \cdot k_{t+1}^i + a_{t+1}^i \leq w_t + \frac{d_{t+1}^i}{R_{t+1}} + \frac{a_{t+1}^i}{R_{t+1}^*},
\]
\(c'_{t+1} = \begin{cases} r_{t+1} \cdot k^i_{t+1} + a^i_{t+1} - d^i_{t+1} - d^s_{t+1} & \text{if } z_{t+1} = E, \\ r_{t+1} \cdot k^i_{t+1} + a^i_{t+1} - d^i_{t+1} & \text{if } z_{t+1} = D, \\ r_{t+1} \cdot k^i_{t+1} + a^i_{t+1} & \text{if } z_{t+1} = N. \end{cases} \)

The difference between equations (10)-(11) and (4)-(5) is that now domestic residents can hold foreign assets and issue foreign debts.\(^{16}\)

In autarky, there is no enforcement risk. After financial globalization, this need not be the case. Enforcing domestic debts reduces consumption inequality as before globalization and this generations like. But enforcing foreign debts reduces their average consumption and this they dislike. Thus, generations would like to enforce domestic debts and default on foreign ones ex post. But their inability to perfectly discriminate between domestic and foreign debts creates the trade-off that lies at the heart of all our results. Some generations might choose to enforce foreign debts to enforce domestic ones. But others might instead choose not to enforce domestic debts to avoid enforcing foreign ones. We examine each of these cases in turn.

IV.A. Enforcing Domestic Debts Leads to Enforcement of Foreign Debts

We start the analysis of the enforcement trade-off by constructing an equilibrium in which generations choose the discrimination lottery. We conjecture that market participants expect the discrimination lottery when institutions fail and then check whether the resulting trade is consistent with generations preferring the discrimination lottery if institutions fail. We refer to this equilibrium as optimistic since domestic debts are always enforced and default on foreign debts is minimized.

In the optimistic equilibrium, domestic debts are enforced with probability one, while foreign debts are enforced only with probability \(\pi + (1 - \pi) \cdot (1 - \delta) \). Thus, interest rates on domestic and foreign debts differ. Competition among entrepreneurs ensures that the contractual interest rate on domestic debts equals the return to investment. Foreigners require an expected return of one

\(^{16}\)We allow domestic and foreign debt contracts to offer different contractual interest rates. Whether this is a good assumption or not depends on the context. It seems appropriate here since borrowing by entrepreneurs is often intermediated by banks and other financial institutions that can price discriminate among their clients. This assumption would not be appropriate, for instance, if we focused on borrowing by sovereigns since sovereign debt can easily be retracted in secondary markets. This is why we assumed instead that price discrimination is not possible in Broner et al. (2014). In any case, we have worked out this alternative case as well in the present context. Although the algebra is more cumbersome, all the results still go through.
and this is why the contractual interest rate on foreign debts is $1/p_t^E$. Thus, we have that

$$R_{t+1} = \alpha \cdot A \cdot k_{t+1}^{\alpha-1} \quad \text{and} \quad R^*_t = \frac{1}{\pi + (1 - \pi) \cdot (1 - \delta)}.$$ \hfill (12)

Then, maximization of utility in equation (1) subject to the budget constraints in equations (10) and (11) generates the consumptions

$$c^i_{t,t} = \frac{1}{1 + \beta} \cdot w_t,$$

$$c^i_{t,t+1} = \begin{cases}
\frac{\beta}{1 + \beta} \cdot w_t, & \text{if } z_{t+1} = E, \\
\frac{\beta \cdot p_t^D}{1 + \beta} \cdot w_t \cdot \frac{1}{\alpha \cdot A \cdot k_{t+1}^{\alpha-1} - \pi - (1 - \pi) \cdot (1 - \delta)} & \text{if } z_{t+1} = D.
\end{cases}$$ \hfill (13)

(14)

Once again, equations (13) and (14) can be understood by noticing that there are three relevant consumptions for individual i: consumption during youth, consumption during old age if $z_{t+1} = E$, and consumption during old age if $z_{t+1} = D$. Given existing assets, it is possible to “purchase” these three consumptions at prices 1, $\frac{1}{R^*_{t+1}}$, and $\frac{1}{R_t} - \frac{1}{R^*_t}$, respectively. Individual i has income equal to w_t and allocates a share $\frac{1}{1 + \beta}$, $\frac{\beta \cdot p_t^E}{1 + \beta}$, and $\frac{\beta \cdot p_t^D}{1 + \beta}$ of this income to purchase the respective consumption.

The following proposition describes the equilibrium dynamics of our country after financial globalization when market participants are optimistic:

Proposition 2. After financial globalization, there may exist an optimistic equilibrium in which $p_t^E = \pi + (1 - \pi) \cdot (1 - \delta)$, $p_t^D = (1 - \pi) \cdot \delta$, and $p_t^N = 0$. The law of motion of the capital stock is given implicitly by

$$\alpha \cdot A \cdot k_{t+1}^{\alpha-1} = \begin{cases}
1 + \frac{(1 - \pi) \cdot \delta}{\pi + (1 - \pi) \cdot (1 - \delta)} \cdot \frac{k_{t+1} - s \cdot A \cdot k_t^{\alpha}}{k_t} & \text{if } k_t < \kappa, \\
1 & \text{if } k_t \geq \kappa,
\end{cases}$$ \hfill (15)

where $\kappa \equiv (\alpha \cdot A)^{\frac{1}{1-\alpha}} \cdot (s \cdot A)^{-\frac{1}{\pi}}$. The optimistic equilibrium exists if and only if:

$$k_t \geq \tilde{k} = \begin{cases}
0 & \text{if } \frac{\omega \cdot (1 - \varepsilon)}{1 - \delta} \geq 1, \\
\left[1 - \frac{\omega \cdot (1 - \varepsilon)}{1 - \delta} \right]^{\frac{1}{\pi}} \cdot \left[1 - (1 - \pi) \cdot \delta \cdot \frac{\omega \cdot (1 - \varepsilon)}{1 - \delta} \right]^{\frac{1}{\pi}} \cdot \kappa & \text{if } \frac{\omega \cdot (1 - \varepsilon)}{1 - \delta} < 1.
\end{cases}$$ \hfill (16)
Proof: Assume the probabilities as stated in the proposition. To obtain the law of motion of the capital stock, simply notice that \(\int_{\delta \in \delta_t} \delta^t_{t+1} = \alpha \cdot A \cdot k^\alpha_{t+1} \) if \(z_{t+1} = D \) and use equation (14). Finally, the condition for the equilibrium to exist follows from substituting consumptions into the welfare function and checking that \(z_{t+1} = D \) is preferred to \(z_{t+1} = N \) ex post. □

The law of motion in Proposition 2 describes the relationship between the return to investment and the expected return on foreign debts. To understand this relationship, note that the foreign borrowing and lending of the country is given by

\[
\frac{d^*_t}{R^t_{t+1}} = \max \{ 0, k^\alpha_t - s \cdot A \cdot k^\alpha_t \}, \\
\frac{a^*_t}{R^t_{t+1}} = \max \{ 0, s \cdot A \cdot k^\alpha_t - k_{t+1} \}.
\]

Also, note that \(\kappa \) is the value of the capital stock such that the country neither borrows nor lends: \(s \cdot A \cdot \kappa \equiv (\alpha \cdot A)^{\frac{1}{1-\alpha}} \). If \(k_t \geq \kappa \), the country invests up to the point at which the return to investment equals one and it lends the rest of its savings abroad: \(d^*_t = 0 \), \(a^*_t = k^\alpha_t - k_{t+1} \), and \(\alpha \cdot A \cdot k^\alpha_t = 1 \). If \(k_t < \kappa \), the country borrows and invests up to the point at which the return to investment equals one plus a risk premium that compensates for the fact that investment financed by foreign borrowing is risky: \(d^*_t > 0 \), \(a^*_t = 0 \), and \(\alpha \cdot A \cdot k^\alpha_t = 1 + (1 - \pi) \cdot \delta \cdot \frac{d^*_t}{k_{t+1}} \). This risk premium increases both with enforcement risk, i.e. \((1 - \pi) \cdot \delta \), and with leverage or exposure to this risk, i.e. \(\frac{d^*_t}{k_{t+1}} \).

In the optimistic equilibrium, the credit market works relatively well. With some probability, the country defaults on its foreign debts. But domestic debts are always enforced. Since the domestic interest rate equals the return to investment, savers and entrepreneurs effectively have the same budget sets and make the same choices. Before financial globalization, savers lend their savings to entrepreneurs and the latter invest these savings for them. After financial globalization, savers and entrepreneurs borrow from abroad the same amount. Then, savers lend to entrepreneurs not only their own savings but also their foreign borrowing. Entrepreneurs invest their own savings and foreign borrowing, plus the savings and foreign borrowing of the savers. This pattern of trade allows savers and entrepreneurs to share default risk. This is why the risk premium depends on the foreign borrowing of the country and not on the foreign borrowing of entrepreneurs.

Proposition 2 also states that the optimistic equilibrium exists if and only if the country has a capital stock above a threshold level. This reflects the enforcement trade-off faced by generations.
when institutions fail. On the one hand, the discrimination lottery leads to foreign payments that reduce the average consumption of the generation. On the other hand, the discrimination lottery leads to domestic payments that reduce inequality within the generation. The higher the capital stock, the higher the fraction of investment financed with domestic savings. This lowers foreign payments and raises domestic ones, increasing the incentives to enforce. Thus, there exists a threshold level for the capital stock such that the discrimination lottery is preferred for all capital stocks above that threshold and not preferred for all capital stocks below it.

This threshold depends on how easy it is to discriminate against foreigners and on the distaste for the inequality that would be created by not enforcing domestic debts. This is why the threshold depends on δ, ε, and ω. If discrimination is very likely, i.e. $\delta \to 1$, the threshold drops to zero. If default leads to extreme inequality, i.e. $\varepsilon \to 0$, and this inequality is perceived as a very serious problem, i.e. $\omega \to 1$, then the threshold also drops to zero.\footnote{If a generation chooses not to enforce debts when market participants expected the discrimination lottery, savers have zero consumption. This is because their only source of income when old are domestic debts. With any welfare function that penalizes infinitely zero consumption (e.g. average utility) generations would always choose the discrimination lottery and the threshold would be zero. This is not a robust result however if individuals have other sources of income. For example, individuals might receive wages or pension payments when old. Also, they might want to hold foreign assets if there are sources of risk other than enforcement risk.}

Figure III shows the laws of motion of the capital stock before (dashed line) and after (solid line) financial globalization if market participants are optimistic, that is, equations (9) and (15) respectively. The two panels are drawn for different values of ε. Since savings is unaffected by financial globalization, for each level of capital, the difference between these two lines equals the net foreign asset position of the country. If the country is capital poor, i.e. $k_t < \kappa$, the law of motion after financial globalization is above that of autarky, indicating that the country imports capital. If the country is instead capital rich, i.e. $k_t > \kappa$, the law of motion after financial globalization is below that of autarky, indicating that the country exports capital. From any initial value above the threshold, the capital stock monotonically converges to a steady state with the capital stock

$$k_{\infty}^O = \left((\pi + (1 - \pi) \cdot (1 - \delta)) \cdot \alpha + (1 - \pi) \cdot \delta \cdot s \cdot A \right)^{\frac{1}{1 - \sigma}}$$

if $k_{\infty}^O \geq \tilde{\kappa}$, as in the right panel of Figure III. Our assumption that $s \leq \alpha$ implies that this new steady state is higher than that of autarky and it is such that the country imports capital. If $k_{\infty}^O < \tilde{\kappa}$, as in the left panel of Figure III, from any initial value above the threshold, the capital stock monotonically declines. Once the threshold has been crossed, the optimistic equilibrium no
IV.B. Defaulting on Foreign Debts Leads to Default on Domestic Debts

We continue our analysis of the enforcement trade-off by constructing an equilibrium in which all debts are enforced with probability \(\pi \). We conjecture that market participants believe that debts will not be enforced when institutions fail and, once again, then check whether the resulting trade is consistent with generations choosing not to enforce debts when institutions fail. We refer to this equilibrium as pessimistic.

In the pessimistic equilibrium, domestic and foreign debts are perfect substitutes as they are both enforced with probability \(\pi \). Thus, these contracts offer the same interest rate so that their expected gross return is one:

\[
R_{t+1} = R^*_{t+1} = \frac{1}{\pi}.
\]

Then, maximizing utility in equation (1) subject to the budget constraints in equations (10) and (11) generates the consumptions

\[
c_{i,t} = \frac{1}{1 + \beta} \cdot w_t,
\]

\[
c_{i,t+1} = \begin{cases}
\frac{\beta}{1 + \beta} \cdot w_t & \text{if } z_{t+1} = E, \\
\frac{1 - \pi}{1 + \beta} \cdot w_t & \text{if } z_{t+1} = N.
\end{cases}
\]

There are again three relevant consumptions for individual \(i \): consumption during youth, consumption during old age if \(z_{t+1} = E \), and consumption during old age if \(z_{t+1} = N \). Given existing assets, it is possible to “purchase” these three consumptions at prices \(\frac{1}{R_{t+1}} \), \(\frac{1}{R^*_t} \), and \(\frac{1}{\max\{q_i \cdot r_{t+1}, 1\}} \), respectively. Individual \(i \) has income equal to \(w_t \) and allocates a share \(\frac{\beta}{1 + \beta} \cdot \frac{1}{R_{t+1}} \), and \(\frac{\beta}{1 + \beta} \cdot \frac{1}{R^*_t} \), and \(\frac{\beta}{1 + \beta} \cdot \frac{1}{\max\{q_i \cdot r_{t+1}, 1\}} \) of this income to purchase the respective consumption.

The following proposition describes the equilibrium dynamics of our country after financial globalization when market participants are pessimistic:

Proposition 3. After financial globalization, there is a pessimistic equilibrium in which \(p^E_t = \pi \),
$p^D_t = 0$, and $p^N_t = 1 - \pi$. The law of motion of the capital stock is given implicitly by

$$
\alpha \cdot A \cdot k_{t+1}^{\alpha-1} = \begin{cases}
1 + \frac{1 - \pi}{\pi} \cdot \frac{k_{t+1} - \varepsilon \cdot s \cdot A \cdot k_t^\alpha}{k_t} & \text{if } k_t < \varepsilon^{-\frac{1}{\alpha}} \cdot \kappa, \\
1 & \text{if } k_t \geq \varepsilon^{-\frac{1}{\alpha}} \cdot \kappa.
\end{cases}
$$

(20)

The pessimistic equilibrium always exists.

Proof: Assume the probabilities stated in the proposition. To obtain the law of motion of the capital stock, simply notice that $\int_{i \in F} c^*_{i,t+1} = \alpha \cdot A \cdot k_{t+1}^\alpha$ if $z_{t+1} = N$ and use equation (14). Finally, the equilibrium always exists because, after substituting consumptions into the welfare function, it is possible to check that $z_{t+1} = N$ is always preferred to $z_{t+1} = D$ ex-post when institutions fail.\(\square\)

The law of motion in Proposition 3 describes again the relationship between the return to investment and the expected return on foreign debts. Savers prefer to hold safe foreign assets than risky domestic debt since both offer the same expected return. As a result, entrepreneurs only issue foreign debts and the foreign borrowing and lending of the country is given by

$$
\frac{d_{t+1}^*}{R_{t+1}} = \max \{0, k_{t+1} - \varepsilon \cdot s \cdot A \cdot k_t^\alpha\},
$$

$$
a_{t+1}^* = (1 - \varepsilon) \cdot s \cdot A \cdot k_t^\alpha + \max \{0, \varepsilon \cdot s \cdot A \cdot k_t^\alpha - k_{t+1}\}.
$$

Note now that $\varepsilon^{-\frac{1}{\alpha}} \cdot \kappa$ is the value of the capital stock such that entrepreneurs neither borrow nor lend: $\varepsilon \cdot s \cdot A \cdot k^\alpha \equiv (\alpha \cdot A)^{-\frac{1}{\alpha}}$. If $k_t \geq \varepsilon^{-\frac{1}{\alpha}} \cdot \kappa$, entrepreneurs invest up to the point at which the return to investment equals one and they lend the rest of their savings abroad: $d_{t+1}^* = 0$, $a_{t+1}^* \geq (1 - \varepsilon) \cdot s \cdot A \cdot k_t^\alpha$, and $\alpha \cdot A \cdot k_{t+1}^{\alpha-1} = 1$. If $k_t \leq \varepsilon^{-\frac{1}{\alpha}} \cdot \kappa$, entrepreneurs borrow and invest up to the point at which the return to investment equals one plus a risk premium: $d_{t+1}^* > 0$, $a_{t+1}^* = (1 - \varepsilon) \cdot s \cdot A \cdot k_t^\alpha$, and $\alpha \cdot A \cdot k_{t+1}^{\alpha-1} = 1 + (1 - \pi) \cdot \delta \cdot \frac{d_{t+1}^*}{k_{t+1}}$. Now the risk premium depends on the foreign borrowing of entrepreneurs and not that of the whole country.

In the optimistic equilibrium, savers purchase riskless debts from entrepreneurs. Thus, the total amount of “riskless” funding available for investment consists of the country’s total savings, i.e. $s \cdot A \cdot k_t^\alpha$. In the pessimistic equilibrium, savers purchase foreign assets. Thus, the total amount of “riskless” funding available for investment consists only of the entrepreneurs’ own savings, i.e. $\varepsilon \cdot s \cdot A \cdot k_t^\alpha$. This raises the risk premium and lowers investment and the capital stock.

Proposition 3 also says that the pessimistic equilibrium exists for all levels of capital. The
intuition is clear: in the pessimistic equilibrium all debts are foreign. Thus, default on all debts is always preferred to the discrimination lottery.

Figure IV shows the laws of motion of the capital stock before (dashed line) and after (solid line) financial globalization if market participants are pessimistic, that is, equations (9) and (20) respectively. The two panels are drawn for different values of ε. For low levels of capital, financial globalization shifts the law of motion upwards, indicating that the country imports capital. For higher levels of capital, financial globalization shifts the law of motion downwards, indicating that the country exports capital. Interestingly, there is always a set of capital stocks lower than κ for which the country exports capital even though it is capital scarce. From any initial value, the capital stock monotonically converges to a steady state with the capital stock

$$k_{\infty}^P = \left([\pi \cdot \alpha + (1 - \pi) \cdot \varepsilon \cdot s] \cdot A \right)^{\frac{1}{1-\pi}}.$$

As shown in the left panel of Figure IV, the steady state after globalization is above that of autarky if ε is large. This is not surprising. More surprising perhaps is the right panel where ε is small and the steady state after globalization is below that of autarky. To understand how this might happen, consider the limiting case in which $\pi \to 0$. After financial globalization, entrepreneurs cannot borrow from foreigners. Even worse, now they can no longer borrow from savers since these prefer to purchase foreign assets. The capital stock and welfare fall.

IV.C. Multiple Equilibria and Sunspots

The economy can have multiple equilibria. As usual, we assume that there is a “sunspot” that determines which equilibrium is played. The variable x_t denotes the equilibrium played at t, where $x_t = P$ or $x_t = O$ if the equilibrium is pessimistic or optimistic respectively. Let q_t be the transition probability, i.e. $q_t = \Pr[x_t \neq x_{t-1}]$. If $k_t < \bar{\kappa}$, we have that $q_t = 0$ if $x_{t-1} = P$ and $q_t = 1$ if $x_{t-1} = O$. If only the pessimistic equilibrium exists, market participants must be pessimistic. If $k_t \geq \bar{\kappa}$, the theory does not impose any restriction on q_t. However, we assume from now on that in this case $q_t \in (0, 1)$. This rules out artificial absorbing states and it seems quite natural.

\footnote{The optimistic and pessimistic equilibria are both equilibria in pure strategies. In the optimistic equilibrium generations strictly prefer ex post the discrimination lottery and in the pessimistic equilibrium they strictly prefer ex post to default on all debts. In addition, it can be shown that when both optimistic and pessimistic equilibria exist there is an additional, mixed-strategy, equilibrium in which market participants expect generations to choose the discrimination lottery with probability m_t and to default on all debts with probability $1 - m_t$. The probability m_t is such that it induces savers to hold enough domestic debts to make generations indifferent ex post between the discrimination lottery and defaulting on all debts. We disregard this equilibrium from now on.}
in this context. If both equilibria exist, market participants can always experience a change in expectations.

Figure V shows the laws of motion of the capital stock before (dashed line) and after (solid line) financial globalization in these sunspot equilibria. The top panels show cases in which $k^P_\infty \geq \bar{\kappa}$, while the bottom panels show cases in which $k^P_\infty < \bar{\kappa}$. The left panels show cases in which $k^P_\infty \geq k^A_\infty$, while the right panels show cases in which $k^P_\infty < k^A_\infty$. These panels show all the relevant or generic cases.

The steady state of the economy can have two shapes. If $k^P_\infty \geq \bar{\kappa}$, the capital stock converges to the steady state interval $[k^P_\infty, k^O_\infty]$. Once this interval is reached, the capital stock fluctuates forever within it. From any initial capital stock, convergence to the steady state interval is monotonic. If $k^P_\infty \geq k^A_\infty$, the capital stock and welfare grow as a result of financial globalization. If instead $k^P_\infty < k^A_\infty$, whether the capital stock and welfare grow or fall depends on the fraction of time the country spends in the optimistic and pessimistic states.

If $k^P_\infty < \bar{\kappa}$, the capital stock converges to k^P_∞. If the initial capital is stock is below the threshold this convergence is monotonic. If the initial capital stock is above the threshold, it is possible for fluctuations in investor sentiment to generate fluctuations in the capital stock until a long enough sequence of pessimism eventually takes the economy below the threshold. After this, optimism is no longer possible and the capital stock monotonically converges to k^P_∞. Whether the capital stock and welfare finally grow or fall as the country settles in the new steady state depends on whether k^P_∞ is above or below k^A_∞.

V. A Classic Benchmark: The Representative-Agent Economy

It is commonplace to use representative-agent models to study the effects of financial globalization. In our framework, this is akin to focusing on the limiting case $\varepsilon \to 1$. In this limit, all debts are foreign and this has two important implications. The first one is that the optimistic equilibrium vanishes when the country is capital poor, i.e. $\bar{\kappa} \to \kappa$. This is intuitive since, in the absence of domestic debts, defaulting on all debts is always preferred over the discrimination lottery. The second implication is that the law of motion of the pessimistic equilibrium (equation (20)) is always above that of autarky (equation (9)) when the country is capital poor. This is also intuitive since all the country’s savings are owned by entrepreneurs who invest rather than purchase foreign assets.

Figure VI shows the laws of motion of the capital stock before (dashed line) and after (solid
financial globalization in the representative-agent benchmark for different values of π. After financial globalization, the capital stock and the return to investment monotonically converge to a steady state with a higher capital stock and welfare. Weak enforcement institutions reduce the effects of financial globalization on the steady state capital stock, and also slow down the transition towards it. This can be seen by comparing the different panels of Figure VI. If $\pi = 1$, as in the top panel, the growth effect is maximized and the whole transition takes place in a single generation. If $\pi = 0$, as in the bottom panel, the growth effect vanishes and the economy remains in the autarky steady state. If π is between zero and one, as in the middle panel, there is some growth and the transition takes a few generations.

Figure VII shows a simulation of financial globalization for an intermediate value of π. In this simulation we start the economy at a level of capital below the autarky steady state and assume that financial globalization takes place in period 2. The different panels of Figure VII show the evolution of some key variables for 20 periods.\footnote{Panel A shows the capital stock: k_t. Panel B shows the gross and net foreign asset positions of the country, a^*_t, $-d^*_t$, and $a^*_t - d^*_t$. Panel C shows domestic asset trade d_t. Note that these variables reflect decisions made at $t-1$.}

The young generation in period 2 borrows up to the point at which the return to capital equals the world interest rate plus the appropriate risk premium. Initially savings are low and so gross and net international borrowing are high. This leads to a high risk premium so capital is below its new steady in the adjustment process. As the capital stock grows, so does the savings of subsequent generations, reducing the risk premium and increasing further the capital stock. In the steady state, the country permanently enjoys a higher capital stock. The country remains an international borrower permanently.

Financial globalization raises the country’s income (output net of depreciation and foreign debt payments) permanently. It also brings standard distributional effects. The welfare of the young generation in period 2 falls as the return to its savings declines. The welfare of future generations grows as the increase in their wages more than compensates for the decline in the return to their savings. As usual, it would be possible to achieve a Pareto improvement by complementing financial globalization with a set of intergenerational transfers that compensate the initial generation and still leave future generations better off.

Many researchers working with representative-agent models would object to a literal interpretation of their models as assuming that there is no domestic trade. Instead, they interpret their models more loosely as assuming that domestic and foreign debts are somehow segmented and their
interactions can be neglected. There is another limiting case of our model that makes this loose interpretation “almost” literal. This is the case of perfect discrimination in which $\delta \to 1$. It seems intuitive that, in this limiting case, domestic debts are enforced independently of the size of foreign debts and foreign debts are defaulted upon independently of the size of domestic debts.

Indeed, with perfect discrimination the laws of motion in Figure VI also apply. But the limit is reached through a different route. As $\delta \to 1$ the optimistic equilibrium always exists, i.e. $\bar{\kappa} \to 0$. Even if domestic debts are arbitrarily small, it is always preferred to enforce them and reduce inequality if default on foreign debts is guaranteed. Note then that, as $\delta \to 1$, the law of motion of the optimistic equilibrium converges to that of the representative-agent benchmark in Figure VI. As $\varepsilon \to 1$, we reach this law of motion as the best possible pessimistic equilibrium. As $\delta \to 1$, we reach the same law of motion as the worst possible optimistic equilibrium.\(^{20}\)

Whether we interpret the representative-agent benchmark literally ($\varepsilon \to 1$) or as the case of perfect discrimination ($\delta \to 1$), the message that arises from this benchmark is clear: financial globalization in developing countries should lead to capital inflows, raise investment and growth, and lead to a steady state with a higher capital stock and welfare. In this benchmark the quality of enforcement institutions determines the size but not the sign of these effects. But the representative-agent benchmark ignores the interactions between domestic and foreign debts which, as we argue next, can be quite misleading.

VI. A New Benchmark: Interacting Domestic and Foreign Debts

As we move away from the representative-agent benchmark, we find two key interactions between domestic and foreign debts. The first one is that domestic debts support foreign debts. This “financial-depth” effect, which makes the optimistic equilibrium possible, allows the country to sustain more foreign borrowing than in the representative-agent benchmark and more domestic borrowing than in autarky. The second interaction is that foreign debts destroy domestic debts. This “capital-flight” effect, which makes the pessimistic equilibrium possible, means that the country can sustain less domestic borrowing than in autarky, less foreign borrowing than in the representative-agent benchmark, and possibly negative net foreign borrowing. The financial-depth

\(^{20}\)The perfect discrimination limit would exactly take us to the representative-agent benchmark if, in this limit, the pessimistic equilibrium did not exist. But it still does. We think however that this is a case in which it is justified to disregard the pessimistic equilibrium and focus exclusively on the optimistic one. Choosing to default on all debts when there is the option of defaulting only on foreign debts is a knife-edge result. It would not survive, for instance, simple extensions that generate a small amount of domestic trade.
and capital-flight effects combine in complex and interesting ways to deliver a much richer view of the effects of financial globalization.

Recall the laws of motion of the capital stock illustrated in Figure V. The effects of financial globalization on total borrowing by entrepreneurs and, thus, investment and growth, depend on whether the equilibrium is optimistic or pessimistic. In the optimistic equilibrium, the financial-depth effect implies that total borrowing by entrepreneurs is not only higher than in autarky but also higher than in the representative-agent benchmark. In the pessimistic equilibrium the net effect on total borrowing by entrepreneurs depends on the balance of two forces. The positive one is that foreigners are now present in the credit market offering a new source of financing that is cheap but risky. The negative force is that savers are no longer present in the credit market and this eliminates an existing source of financing that was expensive but safe. The first force dominates if the capital stock is sufficiently low. But there is always a range of intermediate capital stocks in which the second effect dominates and there are net capital outflows even though the return to investment is higher than the international interest rate.

VI.A. The Role of Nondiscrimination

Figure VIII shows how the laws of motion depend on the degree of discrimination. Discrimination affects both the position of the optimistic law of motion and the range of capital stocks for which the optimistic equilibrium exists.

As discussed in section V., if discriminatory enforcement is likely, i.e. high δ, the optimistic law of motion is close to the one with a representative agent. This is because domestic debts are always enforced and foreign debts are enforced with probability close to π. Also, since there is a low risk of having to enforce foreign debts if the discrimination lottery is chosen, and in any case those payments are not very large, the discrimination lottery is very attractive and the threshold $\bar{\kappa}$ is low. This case is illustrated in the top panel of Figure VIII, in which δ is so high that $\bar{\kappa}$ is in fact zero.

If enforcement is likely to be non-discriminatory, i.e. low δ, the optimistic law of motion is far above the one with a representative agent. This is because foreign debts are enforced with high probability, reducing borrowing risk and increasing investment. But this comes at a cost. Choosing the discrimination lottery implies making enforcing foreign debts with a high probability. As a result, the optimistic equilibrium only exists when the country is rich enough so that domestic
debts are so high that it is worthwhile to make foreign payments so as to preserve domestic ones. So $\bar{\kappa}$ is high. This case is illustrated in the middle panel.

An interesting limiting case is the one in which $\delta = 0$. In this case the optimistic equilibrium takes a particularly simple form:

Lemma 1. After financial globalization, if $\delta = 0$ there may exist an optimistic equilibrium with $p_t^E = 1$ and $p_t^D = p_t^N = 0$. The interest rates and the return to investment are

$$R_{t+1} = R_{t+1}^* = A \cdot \alpha \cdot k_{t+1}^{\alpha - 1} = 1. \tag{21}$$

The optimistic equilibrium exists if and only if

$$k_t \geq \bar{\kappa} = [1 - \omega \cdot (1 - \varepsilon)]^{\frac{1}{\alpha}} \cdot \kappa, \tag{22}$$

where $\kappa \equiv (A \cdot \alpha)\left[\frac{1}{(1-\alpha)(1)}\right] ^{\frac{1}{\alpha}} \cdot (A \cdot s) \frac{1}{\alpha}.$

Since foreign and domestic debts are enforced with probability one, there is no borrowing risk and investment is such that the return to investment equals the international interest rate. The optimistic equilibrium is more likely to exist if ε is low because in this case there is more domestic borrowing. It is also more likely to exist if ω is high since in this case generations value more the redistribution that results from domestic enforcement. This case is illustrated in the bottom panel of Figure VIII.

VI.B. Financial Globalization and Economic Fundamentals

Figure IX shows a simulation of financial globalization once we move away from the representative agent benchmark and we allow for a mix of domestic and foreign debtholders. We choose parameters so that a variety of effects can be observed. In particular, if we let \bar{k} be the capital stock at which the pessimistic law of motion intersects the autarky law of motion, Figure IX is drawn for a case in which $k_0 < \bar{k} < \kappa < k_\infty^D$. Financial globalization takes place in period 2 and Figure IX shows the evolution of some key variables for 20 periods.\(^{21}\)

The effects of financial globalization take place along three “phases.” At the time of globalization only the pessimistic equilibrium exists. In the first phase, even though there is capital flight,

\(^{21}\)Panel A shows the capital stock: k_t. Panel B shows the gross and net foreign asset positions of the country, $a_t^*, -d_t^*$, and $a_t^* - d_t^*$. Panel C shows domestic asset trade d_t. Panel D shows the equilibrium played x_t. Note that k_t, a_t^*, d_t^*, and d_t reflect decisions made at $t - 1$.\(^{21}\)
domestic savings are so low that gross capital inflows more than compensate for gross capital outflows and investment and growth increase.

In period 4, the second phase begins in which \(\tilde{k} < k_t < \tilde{k} \). In this phase domestic savings have become large enough to make gross outflows greater than gross inflows. The net foreign asset position of the country is positive even though it is capital scarce, and investment and growth are lower than they would be if the economy were closed. Since we assumed \(\bar{k} < k_P^\infty \), growth remains positive in this second phase until \(\bar{k} < k \) and the optimistic equilibrium becomes possible in period five.

From then on the third phase takes place in which the economy transitions between periods of optimism, with net capital inflows and high investment and growth, and periods of pessimism, with net capital outflows and low investment and growth. In this phase income might be on average higher or lower than the one in autarky depending on the fraction of time the economy spends in the optimistic equilibrium. Volatility is unambiguously higher than in autarky.

How do these effects depend on fundamentals?

1. (Initial level of development) Figure IX shows the case of a country that liberalizes at a low level of development and goes through three different phases. During the initial phase, the country imports capital and growth accelerates. If financial globalization takes place at an intermediate level of development, i.e. if \(\tilde{k} < k_0 < \bar{k} \), the country skips this phase and enters directly into the second phase. Thus, financial globalization leads to net capital outflows and slows down growth. If financial globalization takes place instead at high levels of development, i.e. \(\bar{k} < k_0 \), the country skips the first two phases and moves directly to the third phase in which both the pessimistic and optimistic equilibria exist. In this case, financial globalization leads to capital imports and higher growth if beliefs are optimistic, but to capital exports and lower growth if beliefs are pessimistic. Financial globalization also creates a recurrent cycle of high- and low-growth periods.

2. (Productivity) In this model, \(A \) scales up all laws of motion by the same factor and therefore does not fundamentally affect the results. As is common in growth theory, we could have expressed the capital stock adjusted by productivity, i.e. \(\tilde{k}_t = A^{-\frac{1}{1-\alpha}} \cdot k_t \). All the results derived in the previous point for the initial capital stock would apply to this quantity. That is, what matters for the dynamics of the economy is the productivity-adjusted capital stock, and not the capital stock by itself.
3. \textit{(Savings)} As s increases, the law of motion under pessimism becomes closer to that under optimism and, as a result, the average capital stock increases and its volatility decreases. As s decreases relative to the case in Figure IX, the opposite occurs. If s falls enough, eventually we find that $\bar{\kappa} < k_{SS}^P < \bar{\kappa}$ or even $k_{SS}^P < \bar{\kappa} < \bar{\kappa}$. That is, the country reaches the new steady state and stops growing before leaving the second or even the first phase.

4. \textit{(Quality of enforcement institutions)} An increase in π has a similar effect as an increase in s. It raises the pessimistic law of motion, making it more likely than the steady state is in phase III, and within this phase it increases average income and decreases its volatility.

5. \textit{(Probability of discrimination)} As discussed in section VI.A., a reduction in δ raises the optimistic law of motion but increases the threshold $\bar{\kappa}$. Thus, as long as the capital stock at the time of globalization is high and expectations remain optimistic a reduction in δ increases the benefits of globalization. However, this comes at the cost of higher volatility and a higher likelihood that the economy reaches its steady state in phases I or II.

As this discussion shows, it is not in general the case that financial globalization in a capital scarce country raises the steady state capital stock and consumption and speeds up the convergence process towards this steady state. The effects of financial globalization on the growth process are much richer than this and depend in a subtle but quite clear way on the specific characteristics of the country that is liberalizing.

VII. Rethinking the Effects of Financial Globalization

There is a vast empirical literature on the effects of financial globalization. However, this literature is subject to important data limitations. In particular, there is a relatively small number of liberalization episodes, financial globalization is often accompanied by other policy reforms, and countries probably take into account the potential effects of globalization when deciding whether to lift restrictions on international financial transactions. As a result of these data limitations, there is no strong consensus regarding the detailed effects of financial globalization.\footnote{See Prasad, Rajan, and Subramanian (2007), Kose, Prasad, and Terrones (2009), and Obstfeld (2009) for recent surveys.} Still, there are four broad aspects of financial globalization about which there is growing empirical support:
1. \textit{(Threshold effects)} The effects of financial globalization are heterogeneous, depending on a variety of well-identified country characteristics. In particular, Arteta, Eichengreen, and Wyplosz (2001), Edwards (2001), Bekaert, Harvey, and Lundblad (2005), Alfaro, Kalemli-Ozcan, and Volosovych (2008), Papaioannou (2009), and Kose, Prasad, and Taylor (2011) have found that financial globalization leads to capital inflows and higher investment and growth in developing countries with relatively strong institutions, developed domestic financial markets, and high initial income.23 These threshold effects are absent in the representative-agent benchmark, which predicts that financial globalization should always lead to capital inflows in developing countries. The reason is that even though foreign sources of financing might be risky, they nonetheless constitute a net addition to overall financing since under perfect discrimination domestic sources remain safe. Our theory can account for the heterogeneous effects of financial globalization because the optimistic equilibrium only exists beyond a threshold. In particular, in developing countries that are sufficiently rich and which have deep enough domestic financial markets the optimistic equilibrium exists and financial globalization is more likely to lead to capital inflows and higher investment and growth. This is the financial-depth effect. In developing countries that are poor or which have shallow domestic financial markets the optimistic equilibrium does not exist and financial globalization results in domestic capital flight. Among these countries, in those that are very poor or that have very shallow domestic financial markets the capital-flight effect is weak and globalization still results in net capital inflows. For intermediate levels of income and domestic financial development the capital-flight effect is so strong that financial globalization results in net capital outflows and lower investment and growth.

2. \textit{(Allocation puzzle)} Capital often flows to developing countries with low productivity growth and away from developing countries with high productivity growth. This is shown by Prasad, Rajan, and Subramanian (2007), Gourinchas and Jeanne (2013), and Alfaro, Kalemli-Ozcan, and Volosovych (2014). Gourinchas and Jeanne (2013) argue that this correlation reflects higher savings in high growth countries while Alfaro, Kalemli-Ozcan, and Volosovych (2014) argue that the correlation reflects mostly public transactions, which might be driven by political as opposed to economic factors.24 The representative-agent benchmark cannot account

23 Regarding volatility effects, there is also some evidence that financial liberalization increases macroeconomic volatility and that this effect is subject to similar threshold effects. See Kose, Prasad, and Terrones (2003), Bekaert, Harvey, and Lundblad (2006), and Broner and Rigobon (2006).

24 Relatedly, Aguiar and Amador (2011) show that reductions in public debt are associated with faster economic
for the negative correlation between capital inflows and productivity growth, as higher productivity always increases the return to capital and, thus, investment and capital inflows. In our theory the link between productivity growth and capital inflows is more subtle. Within a given equilibrium, higher productivity growth increases the incentives to borrow from foreigners. But higher productivity growth, by increasing the amount that entrepreneurs would want to borrow in the optimistic equilibrium, makes it harder for this equilibrium to exist. As a result, there is always a range of capital stocks for which an increase in productivity growth destroys the optimistic equilibrium and leads to a reduction in capital inflows.25

3. (Collateral effects) Financial globalization, in addition to providing a new, cheaper source of funding for emerging markets, can have indirect effects by affecting the workings of domestic financial markets. Demirgüç-Kunt and Detragiache (1998), Kaminsky and Reinhart (1999), Reinhart and Rogoff (2009 and 2011), and Bonfiglioli (2009) show that the incidence of domestic financial crises increases with financial globalization and Gennaioli, Martin, and Rossi (2014) show that defaults on foreign debts are associated with domestic financial crises.26 These collateral effects of financial globalization cannot be accounted for by the representative agent benchmark, since its assumption of perfect discrimination in enforcement implies that domestic financial markets remain insulated from defaults on foreign lenders. Once the assumption of perfect discrimination is abandoned, there are important interactions between foreign and domestic debts. One of these is that default on foreign debts might lead to defaulting on domestic ones. As a result, the probability of domestic defaults can increase with financial globalization. In the model this happens in the pessimistic equilibrium, in which the higher incidence of domestic financial crises leads to the detrimental capital-flight effect, shallow domestic financial markets, and the possibility of net capital outflows and lower investment and growth.27

25A similar argument implies that an increase in the savings rate, by increasing the range of capital stocks for which the optimistic equilibrium exists, can lead to an increase in capital inflows.

26The literature has often used the term collateral effects to refer to seemingly positive effects of financial globalization on productivity. See Edwards (2001), Gourinchas and Jeanne (2006), Bonfiglioli (2008), and Kose, Prasad, and Terrones (2009) for empirical evidence and a quantification of these effects. Our theory as it stands cannot account for these effects since productivity is affected neither directly by globalization nor indirectly via its effects on domestic financial markets. It would be easy to extend the model so that savers inefficiently invest in capital when domestic financial markets deteriorate. Interestingly, Kose, Prasad, and Terrones (2009) find that while FDI and portfolio equity are positively correlated with TFP growth the opposite is true for debt flows.

27The other interaction between foreign and domestic debts is that enforcing domestic debts sometimes leads to enforcement of foreign debts with higher probability than in the representative-agent framework. In the model, this
4. *(Sudden stops)* Developing countries that have lifted restrictions on international financial transactions, i.e. emerging markets, are subject to episodes in which there is a sudden reversal of capital inflows and large drops in investment and growth. Dornbusch, Goldfajn, and Valdés (1995) was the first to refer to these events as sudden stops. They have been analyzed empirically by Milesi-Ferretti and Razin (2000), Calvo and Reinhart (2000), and Calvo, Izquierdo, and Talvi (2006) and theoretically by Calvo (1998), Caballero and Krishnamurty (2001), Choi and Cook (2004), Gopinath (2004), Martin and Rey (2006), and Mendoza (2010) among others.\(^{28}\) The classic benchmark cannot account for these events. The reason is that in this benchmark there is a unique equilibrium and defaults, although random, do not affect future default probabilities and are not associated with sudden stops.\(^{29}\) Our theory can account for sudden stops because there are multiple equilibria and self-fulfilling expectations. A seemingly successful emerging market might suddenly face a shift from optimism to pessimism that results in capital outflows and a reduction in investment and growth. The model predicts that sudden stops should be more prevalent in middle income emerging markets, since in very poor ones the optimistic equilibrium does not exist and in richer ones the distance between the optimistic and pessimistic laws of motion is smaller.

VIII. On How to Manage Financial Globalization

The representative-agent benchmark predicts that lifting restrictions on cross-border financial transactions in developing countries should be beneficial and lead to capital inflows and higher investment and growth. The theory developed here qualifies these results in a fundamental way by shifting the emphasis towards the importance of domestic asset trade. Whether financial globalization is beneficial or not hinges on keeping this trade and this in turn depends on country characteristics and luck.\(^{30}\)

Even if other policy instruments are not available, countries must still decide whether to lift

\(^{28}\) See Lorenzoni (2014) for a recent survey.

\(^{29}\) In models of sovereign risk such as Aguiar and Gopinath (2006) and Arellano (2008) defaults are sometimes associated with reductions in capital inflows as a result of the assumption that defaults trigger punishments that take the form of exclusion from international markets.

\(^{30}\) An important country characteristic, which we take as exogenous, is the quality of institutions. Structural reforms that raise this quality would of course be desirable. Less obviously, the theory shows that financial globalization increases the importance of institutions. In particular, in the model the quality of enforcement institutions does not matter in autarky but becomes crucial after financial globalization. It would be interesting to model formally the process of institutional development taking into account these forces. We leave this task for future research.
restrictions on cross-border transactions. Thus, the first and most rudimentary policy choice we consider is the timing of removing these restrictions. The representative-agent benchmark has a clear implication regarding this choice: *the earlier the better!* After all, this model predicts all financial globalizations to be successful. Is there an equally simple and clearcut prediction coming from the theory developed here? At the risk of oversimplification, we would argue that this is indeed the case and that our theory says: *unless the country is very poor, wait until it is ready!* With pessimism, financial globalization destroys domestic trade and creates capital flight. If the country is very poor, this does not matter much because this trade was small to start with. Thus, financial globalization still leads to capital inflows and raises investment and growth in very poor countries. If the country is not very poor, capital flight is sizeable and leads to capital outflows that lower investment and growth. In this case, a country should wait to remove restrictions on capital flows until optimism is possible. Even then, the theory warns us that financial globalization might have negative effects if investor sentiment turns out to be pessimistic. Being ready is a necessary but not sufficient condition for success.

Waiting until the country has reached a sufficiently high level of development to remove restrictions on capital flows might not be too useful a policy advice for countries that are eager to raise the living standards of their populations now and not later. Thus, a question we must ask is: Is there any policy that can be used to sustain optimism and give financial globalization a chance to succeed when fundamentals suggest that the country should wait? We also know that, even if the country is ready, financial globalization might be unsuccessful if investor sentiment turns out to be pessimistic. Thus, we must also ask: Is there any policy that can be used to rule out pessimism and ensure that financial globalization is successful? These two questions, of course, ask whether there exist policies that make the optimistic equilibrium possible and rule out the pessimistic one.

The answers to these questions are positive under certain conditions. In the model there exist two externalities associated with financial transactions. First, entrepreneurs borrow too much from foreigners, which increases the incentives to default. This is why the optimistic equilibrium does not always exist. It is easy to show that, by imposing controls on capital inflows, the country can always make the optimistic equilibrium possible. In particular, regardless of how low domestic savings are, foreign borrowing can be reduced to a low enough level so that, if domestic savings stay at home, enforcement is preferred ex-post.\(^3\) Second, savers do not lend enough domestically,

\(^3\)Even if feasible, such policy might be counterproductive in countries with very low savings. The reason is that in these countries net capital inflows in such constrained optimistic equilibrium are in fact lower than in the
which also increases the incentives to default. This is why they sometimes send their savings abroad leading to the pessimistic equilibrium. It is obvious that, by imposing controls on capital outflows, the country can always rule out the pessimistic equilibrium. Thus, a careful combination of controls on capital inflows and outflows would ensure that globalization leads to capital inflows and higher investment and growth without increasing volatility as a result of multiple equilibria.

Finally, it is worth commenting on policies that affect the degree of discrimination. During the 1970s and early 1980s, in emerging markets most foreign borrowing was done by governments through foreign banks using syndicated loans, while the private sector was largely shut out from international financial markets. This facilitated discrimination, as countries could choose not to pay to foreign banks without interfering with domestic trade. This institutional setup changed in the 1990s and 2000s. In particular, emerging markets lifted restrictions on the access of the private sector to international markets and encouraged the development of secondary markets where domestic assets can be traded. This has made discrimination much more difficult. This shows that, to some extent, countries can design their financial systems so as to achieve a certain degree of discrimination.

The theory proposed in this paper has clear implications regarding the degree of discrimination that makes financial globalization more likely to succeed. At an early stage of development, countries should adopt financial systems that facilitate discrimination, since this leads to higher capital inflows, investment, and growth. The reason is that discrimination isolates domestic financial markets from enforcement problems affecting foreign debts and the capital-flight effect is minimized. At later stages of development, countries should adopt financial systems that make discrimination difficult as this leads on average to higher capital inflows, investment, and growth. In this case, the financial-depth effect dominates and the country can leverage on its domestic financial markets unconstrained pessimistic equilibrium.

32 Capital controls seem feasible only if countries implement sweeping controls on all foreign financial transactions. But, in a world in which there is also scope for international trade in goods, this would introduce additional distortions. See Broner, Martin, and Ventura (2010) and Broner and Ventura (2011) for a discussion of the effects of capital controls and trade policy in such an environment. See also Magud, Reinhart, and Rogoff (2011) for a survey of the empirical literature on capital controls and their limitations.

33 Note that in this model borrowing limits would have the same effect as controls on capital inflows. But this is only because the marginal lender is foreign. In general, borrowing limits affect both foreign and domestic borrowing, so their effect on enforcement is ambiguous. See Broner and Ventura (2011). Note also that borrowing limits are in general superior to borrowing taxes, since taxes generate distortions in the pessimistic equilibrium.

34 Broner, Martin, and Ventura (2010) show that there are conditions under which the ability to retrade assets in secondary markets has even stronger effects than making discrimination among creditors difficult. In particular, by allowing assets to be retracted before enforcement decisions are made, secondary markets have the potential to redistribute assets in a way that maximizes the incentives to enforce. This suggests that by encouraging even further the development of liquid secondary markets, enforcement problems might be ameliorated at all stages of development, thereby increasing growth and lowering volatility.
to take better advantage of its access to international financial markets. Interestingly, this might be a possible explanation for the change in the institutional setup for emerging market borrowing observed in the early 1990s, which has been taken largely as exogenous by the previous literature.

References

[74] Obstfeld, Maurice, “International Finance and Growth in Developing Countries: What Have We Learned?,” *IMF Staff Papers*, 56 (2009), 63–111.

Figure I: Capital Mobility and Incidence of Banking Crises. Sources: Reinhart and Rogoff (2009), who combine own data with Kaminsky and Reinhart (1999), Bordo et al. (2001), Obstfeld and Taylor (2004), and Caprio et al. (2005). The index of capital mobility is the subjective index from Obstfeld and Taylor (2004).

Figure II: The Autarky Economy. The solid line shows the law of motion of the capital stock in autarky, for parameters \(\{\alpha = 0.3, \beta = 0.9, \rho = 0.1, \omega = 0.2, A = 1, \delta = 0.6, \varepsilon = 0.8, \pi = 0.7\} \). All figures in the paper are based on variations of \(\{\delta, \varepsilon, \pi\} \), while sharing the same values of \(\{\alpha, \beta, \rho, \omega, A\} \).
Figure III: Financial Globalization - Optimistic Equilibrium. The dashed line shows the law of motion of the capital stock in autarky while the solid line shows the law of motion in the optimistic equilibrium in the integrated economy. The left panel is for parameters $\{\delta = 0.6, \varepsilon = 0.8, \pi = 0.7\}$, while the right panel is for parameters $\{\delta = 0.6, \varepsilon = 0.4, \pi = 0.7\}$.

Figure IV: Financial Globalization - Pessimistic Equilibrium. The dashed line shows the law of motion of the capital stock in autarky while the solid line shows the law of motion in the pessimistic equilibrium in the integrated economy. The left panel is for parameters $\{\delta = 0.6, \varepsilon = 0.8, \pi = 0.7\}$ while the right panel is for parameters $\{\delta = 0.6, \varepsilon = 0.4, \pi = 0.7\}$.
Figure V: Multiple Equilibria. The dashed line shows the law of motion of the capital stock in autarky while the solid lines show the optimistic (upper line) and pessimistic (bottom line) equilibria in the integrated economy. The top-left panel is for parameters \(\{\delta = 0.8, \varepsilon = 0.8, \pi = 0.8\}\), the top-right panel is for parameters \(\{\delta = 0.8, \varepsilon = 0.8, \pi = 0.3\}\), the bottom-left panel is for parameters \(\{\delta = 0.5, \varepsilon = 0.8, \pi = 0.8\}\), and the bottom-right panel is for parameters \(\{\delta = 0.5, \varepsilon = 0.6, \pi = 0.3\}\).
Figure VI: Representative-agent economy and quality of institutions. The dashed line shows the law of motion of the capital stock in autarky while the solid line shows the law of motion in the pessimistic (and unique) equilibrium in the integrated economy. The top panel is for parameters \{\delta = 0.6, \varepsilon = 1, \pi = 1\}, the middle panel is for parameters \{\delta = 0.6, \varepsilon = 1, \pi = 0.5\}, and the bottom panel is for parameters \{\delta = 0.6, \varepsilon = 1, \pi = 0\}.
Figure VII: The effects of financial globalization in the representative-agent economy. Financial integration takes place at $t = 2$, in an economy characterized by parameters $\{\delta = 0.6, \varepsilon = 1, \pi = 0.5\}$. The laws of motion of the capital stock are those in the middle panel of Figure VI.
Figure VIII: New benchmark and the degree of discrimination. The dashed line shows the law of motion of the capital stock in autarky while the solid lines show the optimistic (upper line) and pessimistic (bottom line) equilibria in the integrated economy. The top panel is for parameters \(\{\delta = 0.9, \varepsilon = 0.2, \pi = 0.5\} \), the middle panel is for parameters \(\{\delta = 0.45, \varepsilon = 0.2, \pi = 0.5\} \), and the bottom panel is for parameters \(\{\delta = 0, \varepsilon = 0.2, \pi = 0.5\} \)
Figure IX: Effects of financial globalization in the new benchmark. Financial integration takes place at $t = 2$, in an economy characterized by parameters $\{\delta = 0.8, \varepsilon = 0.8, \pi = 0.3\}$ and $Pr[P|O] = 0.15$ and $Pr[O|P] = 0.5$. Under these parameters $k_0 < \hat{k} < \bar{k} < k_\infty$.